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FOREWORD

This report was prepared by Purdue University under USAP Contract
Rumber A® 33(657)-10709. The contract was initiated under Project 4335,
"(U) Applied Communications Research for AF Vehicles," Task 433529, "Basic
Techniques and Systems Integration."” The work was administered under the
direction of the Communications Branch, Electronic Warfare Division, Air
Force Avionics Leboratory, Wright-Patterson Air Force Base, Ohio.

Mr. B. ¥W. Russell was project engineer.

Dr. John Hancock, Purdue University, was the Prircipel Investigator
on the contract. This report covers work conducted from February 1963 to
December 196k,

The first volume in this series 1s & tutorial overview of the
severasl problem areas investigated under this effort and serves to integrate
and place in perspective the more detailed analysis presented in succeeding
solumes. The ;elation of this Volume IV, "Distribution-Free Detection Pro-
cedures,"”" to the overall program mey be obtained by referring to Volume I.

Throughout the course of this work, the principal investigators have
benefited from the several discussions with Mr. Blinn W. Russell, the pro=-
Ject monitor, ard his associates. His interest in this work is gratefully

acknowledged.
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ABSTRACT

A class of two-input detection systems for digital communication over
random and unknown channels is investigsted. The systems investigated possess
false-alarm rates vhich are invariant for wide classes of channel statistics.

Specifically, coincidence destection procedures wiih invariant or distri-
bution-free false-glarm rates are proposed and investigated. The only infor-
mation concerning the channel statistics which is required by these detectors
is the median of the noise under no-signal conditions. The coincidence pro-
cedures are subsequently modified so that the detectors utilizing them become
either learning systems with respect to slowly time-varying and/or ‘nknown
location parameters or adaptive systems with respect to rapidly varyizg and/or
unknown location parameters. The classes of detection problems for which
the false-alarm rates of the above procedures detectors remain distribution-free
are also obtained.

In addition to the distribution-free coincidence desvectors, a detactor
based on the T-statistic, and well suited for the detection of stochastic
signals in noise, is proposed and investigated. The T-statistic is then
modified so that the detector utilizing it becomes an adaptive system with
respect to repidly varying and,/or unknown location parameters. The wide
classes of detection problems for which the above detectors remain distri-
bution-free are alezo obtained.

The distribution-free detectors are then applied to various practical
detection problems, and their performances are evaluated and compared to the

performa:ces of comparable likelihood detectors.

This technical documentary report has been reviewed and / 3 approved.
S

Lt Colonel,
Chief, Electroric Warfure Division
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Chapter 1

INTRODUCTION

1.1 General Beckground of Problem and Brief Review of the Literature

Systems for detecting the presence or absence of & signal in noise

have been extensively linvestigated. Many of these investigations have

o ————

been based on the assumption thet information is available concerning the

W wina

probability distributions of the noise only and of the mixture of signal
and noise. The distributions are usually assumed to de gaussian, and
the test statistic most often utilized is based on the likelihood ratio.
In order for the latter to be computed, knowledge of the form of the

distributions is required.

!

However, the statistics are not always known or readily obtainable.
In many practical cases of interest - such as subsurface communications,
undervater sound detection, communications under Jamming conditions, and
space communications - the probadility distributions mey not te known, nor
can they be easily obtained. Extensive statistical studies, such as those
by Pearson and Geyen (1,2), have been made of the sensitivity of various
likelihood ratio tests to non-normelity.

Since likelihood detectors are inapplicable vhenever there is not
information concerning the functional form of the underiying distributions,
and since it is not possi rle to insure a specified value of a chosen index
of performance when a likelihood detector is used and the distributions
are not known, it 1s necessary tc¢ seek detection procedures that are
invariant in some sense under a change of the underlying yrobability
distributions - as indicatea oy Middleton (3). Such procedures may be

based on a referenc» or control sample obtained under noise only conditions,

Manuscript feleased by authors on .’z?bgmn'y 1965 for publication as an RTD
Technical Report
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vhich can be compared vith a sample obtained vhen a decision is to be
made on the presence or sbsence of signal. In other words, since the
received data cannot be described by distribution functions of known fomm,
twvo samples can be utilized - the 1eference sample obtained when it is
known that oniy noise exists in the channel, and a data sample obtained
under unknown conditions - the decision being based on camparison between
the two samples. Cince random processes are being dealt with, this com-
parison must be a camparison of statistical properties. The logic behind
this approach is based on the assumption that the presence of a signal will
cause a difference to exist batween the statistics of the reference and
data samples.

Capon, Groginsky, Rushforth, Hancock, Wolff and Kenefsky have all
rather recently applied distribution-free statistical tests to the detec-
tion problem.

Capon (4,5,6) has applied many tests to the detection problem, such
as the Mann-Whitney, the Wald-Wolfowitz, the Kolmogorov-Simirnov and the
rank order tests. Of these, the only ones of interest to the communica-
tions engineer are the highly efficient Mann-Whitney and the rank order
tests. However, in order for the rank order s.atistic to be applied to a
specific detection problem, weighting factors must be known. The informa-
tion on these weighting factors cannot be obtained unless the noise distri-
bution is known and even then the factors are often difficult to compute.
Thus, the rank order tests as treated by Cepon are not truly distribution-
free. The Mann-Whitney test, though, is distribution free.

Groginsky (7) proposed procedures whereby the weight function of the
rank order detector is determined from the outcome of previous trial of the
detector, thus effectively removing the necessity of knowledge concerning
the distributionz. The ability of such a detector to obtain the required

weight function fcr a wide class of distribution functions, and to follow




changes in the structure of the sigrals and noise, constitutes its
adaptive feature. Stability and performance of various schemes to update
the weight function were slso studied.

Rushforth (8) re-examined rank order tests and obtained results of
practical importance for detection problems. Hancock (9) re-examined the
Mann-Whitney test and obtained results for non-gaussian noise statistics.

Wolff (10) pointed out that the polarity coincidence correlator is
non-parametric in that the false-alarm rate depends only on the median of
the noise. The latter was assumed to be zero. However, the assumption of
zero median for the noise may not elways be a realistic assumption, in which
case this test is no longer distribution-free.

Kanefsky (11) subsequently showed that the effect of a non-zero median
on the polarity coincidence correlator was removed vhen an adaptive procedure
to set the threshold level for inputs with quasi-stationary medians - such
as described by Eykhoff (12) and Zadeh (13) - was employed. The modified
polarity coincidence correlator was then applied to various detection
provlems of practical importance and its performance compared to that of
various optimum and suboptimum detectors.

From the citings of the above literature, it is seen that there have
been numerous investigations of the applicability of various distribution-
free tests to the detection problem. However, the previous investigations
by no means exhaust the subje~t. There are many very promising distribu-
tion-free tests that have not been previously investigated from the detec-
tion theory standpoint. Some involve the use of coincidence detection
procedures. These coincidence procedures for detecting the presence or
absence of a signal in noise have been studied extensively by Harrington
(14), Schwertz (15), Capon {16), and Bunimovich (17). The detectors used
choose & threshold level and count the number of observations that exceed

this level. On the basis of this number, the detector decides whether or

L S LT




not there is a signal present. In earlier investigations of coincidence
procedures, the threshold was chosen, on the basis of intultion and engineering
Judgment, to be the mean of the input waveform under no-signal conditioas.
This choice of thrzshold leads to a suboptimum coincidence procedure. Later,
an analytical and more sophisticated approach to the subject was taken, and
optimm coincidence procedures were obtained for weak signals in noise. The
optimm coincidence detection procedure chooses the threshold level in such
a manner that it requires the minimum input signal-to-noise ratio to insure
a8 specified information rate and error probability. Some investigators

have obtained the optimum coincldence detector for perticular detection
problems by means of a point-by-point graphical procedure. However, it

must be emphasized that to obtain the optimum threshold, complete knowledge
of the first-order probability distributions under signal and under no-
signal conditions is required. Moreover, the threshold is optimm only for
the particular detection problem for which it was obtained.

In general, the coincidence detection procedures proposed in the past
are parametric procedures - and hence inapplicable vhenever the probability
distributions are unknown. They are optimum for a particular detection
problem for which they have been obtained snd become suboptimum, if not
useless, under different circumstances. The most important drswback of
the parametric coincidence procedures in the face of unknown aistridutions
is their inability to specify and guarantee the attainment of a desired
value of a specified index of performance, such as false-alarm rate. Thus,
a need existe for coincidence detection procehures that are applicable vhen
the distributions are unknown and that possess an index of performance

invariant under changes in the statistics of the detection problem.




1.2 Genersl Assumptions
The cardinal assumptions on which this investigation is based must

be emphasized. These are a) that two sample functions are available; and
b) that indeperdent samples can be cbtained from the two sample functions
wvithout knowing the underlying probability distributions. In addition, all
the investigations are restr.cted to the detection of weak signals in noise.
Comperisons between nonparametric, or distribution-free detection procedures,
and parametric ones are made on the basis of the concept of asymptotic

relative efficiency which is a measure of relative information rate for

specific error probability.

1.3 Methods and Procedures

In this investigation, two distribution-free test statistics are
utilized; these are characterized by simplicity, lack of severe restrictive
assumption, and high efficiency. They consist of the sign, or median, test
statistic and the T-statistic. The first is well suited for the detection
of deterministic signals in noise, wvhile the T-statistic is well suited for
the detection of stochastic signals in noise.

The sign test statistic as used here constitutes a coincidence detec-
tion procedure. In this investigation, coincidence detection procedures
with invariant false-alarm rates for a wide class of distribution functions
are proposed and investigated. Conditions under which the coincidence pro-
cedures remain distribution-free are also obtained. The detectors based
on the distribution-free coincidence procedures are then applied to vorious
detection probiems of practical importance; their performence in the prob-
lems 1s evaluated and campared to that of likelihood detectors.

In the distribution-free coincidence procedures investigated here, the
threshold is chosen so that the test statistic possesses, under no-signal

conditions, & known distribution with constant and known mean and variance,




independent of the statistics of the Jetection problem. The invariant

nature of the test statistic distribution under no-signel conditions insures

a false alamm rate invariant with respect to changes in the channel statistics.

The threshold is chosen to be a specified noise ddstribution quantile,
namely, the median (recalling that the "median" is the point at which the
cumlative distribvution is 0.5) - hence the name "median detector" for

the distribution-free coinclience procedume, It must be noted that to
employ the median detectcr, the medilan of the noisz under ne-signal condi-
tions must be known. The latter 1s the only Information corcerning the
channel statistics required by the medlan detector. Since; in many detec-
tion problems of interest, even this minimal information concerning the
channel statistics may nct be available, the m2dian d=tector is made a lear-
ning system with respect t¢ the unknown meéian for a wide :lass of distri-
bution functions. Thus, & Zearning pro:ccdure is herein proposed and inves-
tigated whereby the threshoiil s adjusted £ msintain an invariant false-
alsrm rate even in the case <f an unknowr, stationary cr quasi-stationary
noise median. The conditlions under which tne lz2arning medlan detector
remains distribution-free are cttalned., The leaming m=iian detector 1s
then applied t) a gaussisn and to & noa-gaissian situstion of rractical
importance, and its performance and learring efficiency are evaluated

and compared tc the performance and learning efficliency ¢f likelihcod
detector,

The median detectur ls also made adaptive to rapld changes in the
structure of the nolse for & wide clags of distribution functions; that is,
an adaptive precedurz is proposed and investigated whereby the threshold
is adjusted to maintain an invarient felse-siarm rate even for non-sta-
ticnary noise medians. The :nnditiins inier whl:h the snijsptive median

detector remalns distribution-fres are <btained. The adaptive median




detector 1s then applied to varime actection prcblems and its perrom_nce
is evaluated and compared to that of other distribution-free detectors and
to thut of likelihood detectors.

In this investigation, the T-statistic, an efficient test statistic
for the detection of changes in variance, is applied to the prcblem of
detecting stochastlic signais in noise. The conditions under vhich the
T-statistic remains distribution-free are obtained. To employ the
T-detector based on the T-statistic, the medians of the noise in the
reference and data channels must be known. The T-detector is applied to
a detection problem of practical importance, and its performance in the
problem is evaluated and compared to the performance of the equivalent
likelihood detector.

The T-detector is also made adaptive to changes in the structure of
the noise for a wide class of distribution functions; that is, an adaptive
procedure is proposed and investigated by means of which the threshold is
adjusted to maintain an invariant false-alarm rate when the noise medians
are rapidly changing and/or unknown. Conditions unddr vhich the adaptive
T-detector remaing distribution-free are also obtained. The adaptive
T-detector is then applied to the detec.ion of a gaussian signal in
gaussisn noise and its performance in the problem evaluated and compared

to the performances ¢f the T-detector and optimum likelihood detector.

1.4 Preview of Subsequent Chapters
In Chepter 2, the detection criterion utilized in this investigation

and the assumpticns on thich it is based are discussed. The reclizability
of the assumptions i: shown. In the same chapter, suitable means for
comparing the distribution-free anZ likelihood detectors are proposed and
their physical significance discussed.

In Chapter 3, coincidence detection procedures with invariant false-




alarm rates for a wvide class of distribution functions are proposed. In
part:cular, the median detector, based on a specif.c éistribution-free
ccincidence procedure, is investigated and its general properties obtained.
Subsequently, the medien detector is applied to various detection problems
of practical importance; its performance is evaluated and compared to the
verformance of likelihood detectors.

In Chapter L, the median detector is made s learning system with
respect to unknown stationery or guasi- stationary medians. Conditions
under which the learning median detector false-alarm rate remains distri-
bution-free are also obtained. Subsequently, the learning median detector
is applied to wo detection problems of practical importance and its
performance and learning efficiency are evaluated and compared tc the
performance and learning efficierncy of likelihood detectors.

In Chapter £, the median detector is made adaptive to nor-stationary
noise medians. (onditions under which the adaptive median detector false-
alarm rate remains destribution-free are obtained. The adaptive median
detector 1s then applied to various detection problems and its performance
is evaluated and compared to ‘hat of likelihood detectors.

In Chapter 6, detection besed on the T-statistic 1s investigated and
its genersl properties examined. Conditions urder which the T-detector
false-alarm rate remains distribution-free are also obtained. The T~
detector is then applied to the problem of detecting a gaussisn signal
in gaussian noise, and its performance in the problem is evaluated and
compared to that of a likeliihood detector,

In Chapter 7, tne T-detector is made adaptive with respect to
rapidly changing end/or unknown data and reference channel noise medians.
The conditions under which the adaptive T-detector false-slarm ra‘e

-~emains distribution-free are obtained. The adasptive T-detector is




then appiied to the detection of & gaussian signal in gaussien nciae
and its performance is evaluated and compared to that or s likelihood
detector.

In Chepter 8, conclusions are drawvn and areas for future work are

indicated.




Che-ter 2

GERERAL COESIDERATIONS

2.1 Introduction

In this chapter, the delection criterion utilized in this investigation
and the assumptions on which it is based are presented and discussed. It is
shown that the assumptions are ressonable and the conditions implied are
realizable, under certain conditionms.

in the weak signal case, ihe test statistics employed here obey a set
of reg:larity conditions. These are stated and their significance is
discussed. A performance relation wvhich has been previously derived from
the regularity conditions is e&lso presented. Por a given detection problenm,
it relates the information rate, signal-to-unoise ratio, and the error probs-
bility to s constant which is characteristic of the detector used. Thus,
the sbove constant may be utilized as an index of performance of the
detection system.

For comparing the distribution-free detectors to their equivalent
likelihood detectors, suitable means are proposed and their physical signi-
ficance discussed. These are the asyrptotic relative efficiency and the
detector output signal-to-noise ratio. The asymptotic relative efficiency
is shown to be a measure of the relative information rate for a specified
error probability and vanishing input signal-to-noise ratios. The output
signel--o-noise ratio is defined to be the difference between the means of
the test statistic under no-signal conditions divided by the variance of

the statistic under signal conditions. It 1is shown, for thc weak signal
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case treated here, that the ocutput signal-to-noise ratio as defined above
is functionally related to the error probability. The exact functional

relation is also given.

2.2 The Detection Criterion

The detection criterion utilized in this investigation is based on

the following assumptions. It is assumed that:

a. it is possible to obtain a sample function N(t) of the noise
random process {N(t)), N(t) hereon to be referred to as th«
reference sampie function;

b. it is possible to obtain a sample function Y(t) of the channel
output stochast‘: nrocess {Y(t)}, Y(t) hereon to be referred to
as the data sample;

c. it is possible to obtain n independent samples Il’ PYAEEE !“
from the sample function Y(t) and m independent sample. X, X,
-+« X from the sample function N(t);

d. 1in the absence of the signal, {Y{t)) and (N(t)} are two stochastic

processes of identical first order distributions

On the tasis of the samples Yl, Y., ... Yn and )&, x2, xm, a
decision procedure for detecting deterministic or stochastic signals in
noise is formulated by testing:

H : probability distribution function (caf) of Y, is G (y), 1 = 1,2,

.-n and cdf of X, is F_ (x), 1 = 1,2, ...m and such that Fo(y) =

Go(y); signal is absent
against

H : probshility distribution functien of Y, is Gy (y) and that of X,
i
is Fo(y) and such that G, (v) 4 Fo(y); signal is present
i




1k

where Fo(y) is tne dis‘ribution function of X, when the signal is present or

absent, Go(y) is the distribution function of Yi vhen the signal is absent,

ei(y) is the distribution of !i in the presence of signal. It is to

be noted that G, (y) depends both on the :inde* i znd =, thz sizna'-to-noise
1

r-tio paramet<:-.

and G

The ahove decision procedure simply -tates that if the signal is
abgsent, then the distribution of Yi must be the same as the distribution
of X1 since both were obtained from stochastic processes of identical
first order statistics under no-signal conditions. If, however, the signal
is present, then the distribution function of Yi is not the same as that of
xi since the samples Yi were obtained from a sample function of the signal
and noise process {Y(t)} while the samples X, were obtained fram a

i
sample function of the nois> only random process{N(t)}.

From the previous discugssion of the detection criterion &nd its
associated assumptions, it is obvicus that the acquisition of the reference
sample function fram the noise random process and the extraction of
independent semples from the data and reference sample functions are matters
of cardinal importance.

The acquisition of the reference sample function may be accomplishecd
in various ways depending on the nature of the noise process and the
requirements on information rate. If the noise process is stationary, then
N(t) can be obtained once and for all before the transmission of information
commences. From N(t) the m samples will then be obtained and stored in
the receiver, to be compared later with the n data samples obtained from

Y(t). If the noise random process is quasi-stationary —~ that is, if the

noise statistics although varying with time do so rather slowly in comparison
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with the signaling rate — then one obtains the m noise samples from the
noise entering the receiver when it is known that only noise exists in

the channel, and uses them only for as long as the noise process remains
stationary. Whenever the noise statistics begin to change, the transmission
of information must be interrupted for a sufficient time to enable the
receiver to collect a new set of m samples to be used for as long as the
noise remains stationary. The previous procedure used for acquiring the

m noise sampies when the noise statististics are quasi-stationary requires
knowledge of the length of the time interval for which the noise statistics
are stationary. Such knowledge may bte had as a result of experimental or
theoretical investigations. Ancther disadvantage of the above procedure

is that it requires interrupting the transmission of information, with a
consequznt reduction in information rate. If such reduction of information
rate is undesirable, or if knowledgz concerning the length of time during
which the noise statistics remain stationary is not forthcoming, one may
employ space, angle or frequency diverasity to secure a channel containing
noise only. In selecting the channels, care must be taken to insure that
the first-order nvise statistics will be the same in the reference and data
channels. Hovever, even after a careful selection of the reference channel,
it is stili possible that differences between the first order probability
distributions of the reference channel and data channel noise random proc-
esses will exist. To guard against erroneous decis.ons resulting fram such
differences, two of the test statistic treated here are made adaptive to
differences in noise statistics or to quasi-stationary variations in the
noise statistics.

If the channel statistics are non-stationary, that is, if the
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variations in statistics occur at a rate comparsble to the s.gna.ing rate,
it is evident that one must by necessity employ diversity in order to secure
a reference channel and a data channel such that the noise processes present
in the channels have identical first order statistics

The assumption of independent samples is of prime importance and at
the basis of every result obtained concerning distribution-free statistics.
However, despite the importance attached to it, no sampling procedure has
been proposed to date that would enable one to obtain independent samples
witnout knowledge cf the statistics of *he trecess. The statement is
usually made that to obtain independent samples one must sample infrequently.
However, no quantitative measure has teen given of the length of time
between samples required to insure the independence of the samples. Admittedly,
the subject is a very difficult one. A promising approach to the problem,
at least for stationary or sufficiently quasi-staticnary random processes,
may be found in distribution-free tests of independence. Distriburion-free
tests of independence have teen studied extensively in the statistical
literature (18,19). The tests require n pairs (x, y) of samples from n
continuous distribution fun.tioa ¥(x, y) with continucus marginai diztribution
functions G(x), H(y). They are used to test the hypothesis H: F(x, y) =
G(x) H(y), for all x, y. In applying the tests to the communication
problem, one would obtain the sample pairs from the channel output sample
function as shown in figure 1. The time 1 is the time all-wed between
samples and the question to be answered is whethcr it is sufficiently long
to insure the independence of the samples. It is seen, from figure 1, that
to collect n pa.rs of samples (x, y) where x and y are T seconds apart
requires considerable time. During this time the first and second order

staticstics f the process must remain the same in order for the test to
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ve applicable — hence the necessity for stationarity or quasi-stationarity

of the random processes.

|- < - |- = -] |- = -
4 e oo o X X

Fig. 1. Sampling for Test of Independence

2.3 Means of Camparison

A detection theory to be complete must a) suggest the structure of
the detection system, b) specify procedures for evaluating the performance
of a particular system, and c) specify means for comparing varibus systems.
A choice of one of the many distribution-free test statistics specifies the
detector structure. Thus, distribution-free detection theory fulfills the
first of the above requirements. In the following, means for evaluating
the performance of a detector and means for com.aring it to the performance
of other detectors will be given. To facilitate the presentation, a set
of regularity conditions that the detectors investigated here obey will be
stated and their significance discussed. The conditions are:

S -E(s)
(A) =2 8 B i asymptotically gaussian with mean zero and variance
oelsn}

one uniformly for @ in the closed interval (o, a], a > o, oe(Sn) > o,
vhere S 1s a distribution-free statistic and Ee(Sn), aea(Sn) are
its mean and variance, resgpectively.

(8) E4(5.) =d% E,(S,) exists for all 8 in (o, a), and is continuous

at 0 = O. ,
1 f Fe(sn) 2
(C) limit = {1;;(§;7Je=o = K where K is a positive constant;
n - oo

(D) there exists a sequence [en} suc.. that limit 6 = 0
n -
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o,(s )
° Gn =
(“)th 1
n-w 00D
(F)limtoa(S)-O
0O 'n
n - o
Condition (A) cimply states that the test statistic S is asymptotically
gaussian both under no-signal conditions (6 = 0) and under signal conditions

(8 4 0). Thus, accoring to condition (A), the general character of the

test statistic Sn, obtained whern m and n are large, is shown in Fig. 2.

Pe(sn)

Fig. 2. Test Statistic Distributions for Large Sample Sizes

Here Sa is a decision threshold chosen to insure a probability of false

alarm @. The parameter P is the false dismissal probability and 1 - B is

the detection probability. Conditions (B), (C), (E) and (F) are self-
explanatory. In connection with condition (€), it should be noted that K

is independent of the number of samples and the input signal -to-nnise ratio
parameter en. It depends only on a functional of the noise and signal and
noise only distributions and the particular test statistic utilized.

Condition (D) simply states that we are considering a sequence of alternatives

which approach the hypothesis Ho of no signal present as the number cof
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samples increases. The sequence of alternatives specified by ¢ondition

(D) is necessitated by a desire to maintain constant detection probability
for a constant false-slarm probability as the number of samples increases.
The truth of the above statement will became obvious by examining Figure 2,
and applying conditions (E) and (F). The desire tc maintain constant
false-alarm and detection probabilities as the number of samples increases
stems from the fact that under constant false-alarm gnd detection probabilities
a8 n increases, an explicit functional relation exists for comparing the
information rates of two detectors undesr identical conditions. This will
became apparent when the concepts of asymptotic relative efficiency and
output signal-to-noise ratio are discussed. A practical conseaquence of
condition (D) is that any result obtained based on the above conditions

is valid for vanishing signal-to-noise ratios.

The results obtained in this investigation were derived on the basis
of the aforementioned regularity conditions. Thus, a restriction of the
level of generality was made by considering only the detection of weak
signals in noise. This is appropriate since the weak signal case is
usually the least amenable to solution and the case one usually desires
to solve in practice. Moreover, as was pointed out previously, the choice
of weak signals will also make possible explicit functional expressions
for the means of comparisor .

It has been shown (16) that a detector based on a test statistic
that satisfies the regularity conditions possesses for large sample sizes

a performance relation given
e
2 -1y -1
limit Ken = 2| erf~ (1 - 2a) + erf ~ (1 - 28) (2.3-1)

n ~ o




20

This relates the prcbability of error, the input signal-to-noise ratio Gn,
and the number of samples n to K. The constant K is dependent on the test
statistic and the statistics of the detection problem under consideration.
The importance of the parameter K is apparent. It har “eer z2a'%ed v T ;..
(20) the efficacy of the test statistic, and it may be utilised as an

index of performance for the detector using the statistic. It will be

seen subsequelitly that both the asymptotic relative efficiency and the

output signal-to-noise ratio are functionals of the efficacy.

2.3.1 Asymptotic Relative Efficiency

One of the most important considerations in a detection problem is
the length of time required to detect the presence or absence of the
signal with specified accuracy @ and B, since the signaling rate and hence
the information rate depend on the detection time. The only time consumed
by a distribution-free detector utilizing a data and & reference channel
is the time required to obtain the n samples from the data channel. If
the condition of independence is imposed on the samples, then there is
a limit on how closely one may sample and still obtain independent samples.
Hence, the number of samples required for detection is inversely proportional
to the information rate.

A detector based on the test statistic Sn can be compared to the
detector based on the test statistic Ln on the basis of the information rate
R possible with Sn vs. the information rate R possible with Ln’ for the
same signal in the same environment and for the same specified probability
of error. The comparison will be based on the asymptotic relative

efficiency (20,21,22) defined as:




(2.3-2)

*
where n are the samples required by Lh and n are the samples required
by Sn for the same probability of error.
If the test statistics satisfy conditions (A)-(F), then utilizing the

performance relation (2.3-1), we obtain:

ARE = . (2°3‘5)

where X and K* are the efficacies of Sn and Ln’ respectively, defined by
condition (C). Thus, the asymptotic relative efficiency is in this case
e measure of how much better is the information rate of the detector
based on the statistic Sn than the information rate of the detector based
on the statistic Ln in the detection of the same weak .ignal in the same

environment with a specified error probability.

2.3-2 Signal-to-Noise Ratio

The output signal-to-noise ratioc of a detector based on the test

statistic Sn is defined to be:

S E(s)-E(8)
(%) o — (2:3-4)

As a consequence of condition (B), the mean value theorem (23) may be

A
e-e]

where 0 < 8 < 8 . Utilizing this result in Eq. (2.3-4), we have

applied to obtrin

Ee(sn) i Eo(sn) "% [ E;(Sn)
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limit :) —'[

n—-w o (S )

} (2.3-5)

vhich, as a consequence of the continuity of E;(Sn) at 8 = 0, and conditions

(c), (D) and (2), can be rewritten es

limit (%) = evok (2.3-6)

n -

Thus, it is seen from Eq. (2.3-6) that the output signal-to-noise ratio

for large sample sizes and vanishing signal-to-noise ratios is proportional
to the input signal-to-noise ratio. The constant of proportionality is

a function of the sample size n and the efficacy K. Agein the importance
of the detector efficacy is evident.

The physical justification for the concept of output signal-to-noise
ratio, as defined above, btecomes apparent if one studies Fig. 2. It is
observed there that the two patterns, signal absent and signal present,
become more distinguishable as either the distance between their central
locations (mean values) becomes greater or the concentration of their
values around the central locations becomes greater (smaller variances).
It is also apparent that any increase in distinguishability between the
vatterns due to increased distance between their central locations will
be nullified by an increase in variance. The same .s true for a decrease
in variance if uccompanied by a decrease in distance. Hence, it is the
ratio of distance between central locations of the two patterns to the
variance of the signal present pattern that can serve as a measure of the
distinguishability of the patterns or detectability of the signal in
noise, in the sense described above. In fact, the output signal-to-noise
ratio, as defined here, is a measure in a given detection problem of the

false dismissal probability for a specified false alarm probability.




Thus, tne output signal-to-noise ratio serves as a qualitative measure
of the detectability of the signal in & given enviromment utilizing a
specified detector. In particular, for weak signals and large number of
samples, an exact expression of the reistion between the probabilities of
false alarm and false dismissal and the output signal-to-noise ratio may
be derived utilizing Eq. (2.3-6) and the performance relation Eq. {2.3-1).
The functional relation bétveen output sigral-to-noise ratio and false
alarm and false dismissal probabilities is

2
Y o= 2 [ ertl (1-20) ¢ ert™ (1 - 2B) } (2.3-7)

(

=i
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Chapter 3

MEDIAN DETECTCR

Introduction

Coincidence detection procedures base their decisions on the presence

or absence of the signal on the following test statistic

n

Sn a;ll- Z c(yi - x) (3.1-1)
i=1

where yi are cbservations on the input waveform Y(t), and x is the threshold
level. The function c(z) is defined as

c(z) =1, z >0
(3.1-2)

= 0, 2 <0

The mean and variance of sn wnder no-signal conditions are

i
Sl

n
Efs,) =% ) Elet, - %) (3.1-3)

i=1
n ©

[a £,
i=1l x

)
[1-F (x)]
=1 1

|
S

l'
S

and
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n
coalsn] =% }: 0912 [e(Y, - x)] (3.1-4)
' 1 g=1 -
n
1
= = (1-F (x)I[F_ (x)]
n° EE ° o,

i=1

where Fo.(y) is the probability distribution function of the random variable
Yi

The test statistic Rn is equal to a sum of independent, binomially dis-
tributed random variables; hence, it follows from the central limit theorem
(22) that S is asymptotically geussian under signal and under no-signal
conditions.

For large number of samples, the distribution of Sn, being gaussian,
is completely specified by its mean and variance. In turn, the false
alarm rate of Sn is completely specified by the distributiorn of the test
statistic under no-signal conditions. Thus, for an invariant or distribution-
free faise alarm rate, the mean and variance of Sn under no-signal conditi ons
must be constant, and independent of the channel statistics. It is seen
from Eqs. (3.1-3) and (3.1-4) that i7 the threshold level x is chosen as
in previoué investigations (14,15,16,17), the mean and variance of the
test statistic Sn will vary according to the distribution function of the
noise under no~-signal conditions. Thus, the false alarm rate of the
coincidence detectinn procedure will also vary. For the reasons stated
in Chapter 1, the latter is undesirable when the channel statistics are
unknown. A need, therefore, exists for coincidence detection procedures

with invariant or distribution-free false alarm rates.
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A distribution-free coincidence vprocedure results if the threshold
level is chosen to be a specified noise quantile under no-signal conditions.
Thus, if the pth quantile z 1is chosen as the threshold level, the mean and

Y

variance under no-signal conditions become

n

€081 =1 - %»}Z F;i(zp) (3.1-5)
) i=]
n
ACRREER R £, (IE, (x) (3.1-6)

i=1

For noise with stationary quantile zF under no-signal condit’ons, we have

Fo. (2p) = P i=1,2 .umn (3.1-7)

and the mean and variance are known co.'atants given by

E[S- = _ - ) (3-1-8)

2 0 -

k3 p(1 - p)
% [Sn] - n (3.1-9)

Thus, for this choice of threshold l:vel, the distribution of the coincidence
detection procedure test statistic Sn is asymptotica.ly known and inde-
pendent of the chanrel statistics. Hence, the coincidence detection
procedure possesses an invariant or distribution-free false alarm rate.

To utilize the distribution-free coincidence procedures proposed here,
the only information needed concerning the channel statistics is the speci-
fied quantile of the noise under no-signal conditions.

In this chapter, a particular distribution-free coincidence detector is
proposed and investigated in detail. It utilizes the median of the noise

under no-signal conditions as its threshold level — hence the name median
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detector for this coincidence detection procedure. In essence, the median
detector tests for the presence of the signal by testing for a change of the
median of the input waveform Y(t), the assumption being made implicitly

that such a change in median is the result of the presence of the signal.

In the following, the general properties of the median detector test
statistic are obtained. In particular, its efficacy, output signal-to-
noise ratio, and performance relation are obtained. Subsequently, the
median detector is applied to various detection problems of interest and itis

performance is evaluated and compared to that of likelihood detectors.

3.2 The Median Detector Test Statistic

The median detector as defined above is based on the fol owing test

statistic
n

1 .
8, (M) == Z ely; - M) (3.2-1)
i=1
where the threshold level M is the median of the noise under no-signal
conditions, and the function c(z) is defined in Eq. (3.1-2). Therefore,
the test statistic is operating on the input waveform Y(t) in the same

manner 8 the system shown in Fig. 3.

Y(t) Z2(t) | Half-Wave |c(t) c(t, )] Binary sn(M)
—-i. Adder }———pm{ Ideal 34 Sampler Integrator pe————pm
Limiter

._.T ]

Fig. 3. Block Diagram of Median Detector
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The median M is subtracted from the date sample function Y(t); the
resulting waveform Z(t) is then applied to an ideal half-wave limiter
the output of which is.sampled n times, and the samples averaged tc yield
sn(x).

The test statistic Sn(M) decides for the presence of the signal by
testing for a difference bétﬁeen the median of the data sample function
and M, the median of the reference or noise only sample function. In
effect, the median M serves as the reference sample function.

Stated explicitly, the conditions on which the operation of the median
detector is based are

(a) the medians of the reference and data sample functions under

no-signal conditions are the same;
(b) the common median M of the reference and data samples under
no-signal conditions is known.

Condition (&) insures that any difference between the reference and data
sample function medians is brought about by the presen-e cf the signal.
Condition (b) permits the calculation of the statistic Sn(M). Both
conditions.will be met if the noise under no-signal conditions has a station-
ary redian and the reference and data samples are obtained from the same
channel. The stationarity of the noise median guarantees that the reference
and data samples obtained from the same channel, hence from the same sto-
chastic process {N(t)} under no-signal ~onditions, will have the same
median. The particular value of the median can be obtained by tsking
measurements for sufficiently long time on the channel before the trans-
mission of informaticn commences, so that the true value of the median is

accurately known. This value of the median may be used for all time
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thereafter since the noise median is stationary.

The disturbance present in every commnication channel consists (28) of
an additive disturbance and a multiplicative one, the iatter present only
under signal conditions. Thus, the mild restrictions imposed on the noise
under no signal conditions are restrictions on the additive noise only.

No restrictions, whatsoever, on the nature of the multiplicative disturbance
are necesgssary for the median detector to possess a distribution-free falsge

alarm rate.

3.3 Median Detector General Properties

The general properties of the median detector will ve obtained for thc
case of channel statistics that are first order staticnary under no-signal
conditions. Thus, as a consequence of the first order stationarity, the
random variables Yi, Y2,
waveform at the sampling instants tl, t2, ceoy tn, are identically dis-

coey Yn’ representing the amplitude of the date

tributed with a common distribution Fo(y), under no-signal conditions.

Under signel conditions and in the presence of multiplicative disturbance,
the continuous parameter stochastic process {Y(t))} is not stationary sincc
the signal strength at the receiver is varying with time. Thus, the dis-
tribution functica of Yi’ i=1,2, ..., nis not the same as that of

Y, J=1,2 «¢ee, n, J } i. However, we shall assume that the distribution

J

of Yi, i=1,2, ..., ndiffers from the distribution of YJ, J=1,2, ...

n, J # i, only through the signal-to-noise ratio parameter 9; i.e., the

distribution of ¥, is Ge (y) and that of Y, is Gy (y). This assumption is

i J J

satisfied in many detection problems of interest.
The mean and variance of Sn(M), under no-signal conditions, are given

by Eqs. (3.1-8) and (3.1-9), where in this case




1
F,(4) = 3 (3.3-1)
Therefore the mean and variance are
E[S (M)] = = (3.3-2)
g %s )] = % (3.3-3)
o '“n In ’

It is seen that the mean and variance,under no-signal conditions, are
known and constant, independent of the channel statistics. Thus, the medien
detector false alarm rate, as explained previously, is asymptotically
distr bution-free.

However, the mean and variance of Sn(H) under signal conditions do
depend on the channel statistics. Hence, the detection probability also

depends on the channel statistics. The mean of Sn(M) under signal conditions

is given by
I
ERERCN! .-.;11- E, [c(1, - M)] (3.3-4)

s
n

-%z f 4.0 )
i=1
n

-z z (2 - 6, 00)

H

i=

n
=1 -2 6. (M
1 nlz ei()

AppLying the mean value theorem (23) we obtain
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d Ge(n)
cei(u)-eo(u) =8 T

AJ (3.3-5)
0="9

where 0 < 8 < §,, and because of the first order stationarity of the noise
under no-signal conditions Go(ll} = POU()- Substituting this result in
Eq. (3.3-4), we obtain

-
F -

- 4 d G (M)
1 0
Ea[sn(u)] =1-F(M)-= 2 8 ["Te’" " (3.3-6)
i=]) -
I d G (M) !
1 ]
= Eo[sn(u)] “n Z ai ’:T o = aJ
i=1
For the weak signal case, Eq. (3.3-6) becomes
2 d G_(M)
1 0
Ee[Sn(M)] = Eo[sn(M)] -5 2 o, l:—'a'é'—— } (3.3-7)
i=1 6=20
d G, (M) 2
9 1
« B (5 (M)] -| —&— [a ) e

ae
o=q| " &

-l

g =2
§ == }: ei (3.3-8)

a GG(M)
ae

=E[s (M)] -8 [

where 3 is the average signal-to-noise ratio
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The variance of the test statistic Sn(h; under signal conditions is

n
2 1 .
o fls (M) =% ) op 2 [e(y, - M)] (5.3-9)
@' n n2 01 i
i=1
n
1\’ \
=3 ) -6, M] [6, (M)]
n° ® o
i=)
Utilizing Eq. (3.3-5), we obtain
, == d G (L)
2. - 1\ 2 ] rz = _1A"
o [.,n(M)] = 3 [Sn(M)] -3/ 8, T K 3.7-10’
n -
i=1
For the weak signal case, this becames
2
— | d G, (M)
2 _ 2 1l 2 ]
A [s ()] = o, [s (M)]- 5 o ) (3.3-11)
n 8=0
where 62 is the mean-square value of the signel-to-noise ratio
__ n
2 1 2 .
6 = o z Gi \3.3-12)
i=1

It is to be noted that for the weak signal case 92 << 8.
Utilizing Eqs. (3.3-3) end (3.3-7), we obtain the efficacy of Sn(M)

L | Egls, ()]

K[S (M)] = iimit = PRERC)] (3.3-13)
n N oo a % sn M &=0
2
- iliﬁgg.
® le=o0

The test statistic Sn(M)’ being the sum of independent binomially
distributed random -ariables, is asymptoticelly gaussian under signal

ar ' ur ler no-signal conditions. Thus, it satisfies condition (A).
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Condition (D) is fulfilled in the weak signal case investigated nere. The
existence of the efficacy given in 2q. (3.3-13) is the only requirement
for the statistic to satisfy conditions (B), (C) and (E). The efficacy
exists for all continuous parameter stochastic processess with continucus
first order distributions. It is seen frocm Eq. (3.3-3) that Sn(M)
satisfies condition (F) always.

A test statistic is said to be consistent if, for a specified false
alayic rate, its detection probabiiity approaches one as the number of
samples increases. Conditions (E) and (F) establish the consistency of
sn(u) .

Since the test statistic satisfies conditions (A)-(F), its performsnce

relation and output signal-to-noise ratio are given by

2
2

a G_ (M) _ .

L ——Eg——- #n=2 [erf°l (1-2a) + erf L (1-2ﬂ)] (3.3-14)
86=0
and ,_d G, (M) i
SN _ .= 0
( ﬁ) =29 Jn L——d—é———| 6= 0 (."’3‘15\,’

The test statistic efficacy may also be used, as shown in Chapter 2,
to obtain the relative information rate of Sn(M) with respect to a
likelihood statistic. Thus, the efficacy given in Eq. (3.3-13) completely

specifies all of the performance indices of the median detector.

2.4 Applications

In the following, the median detector is spplied to specific de-
tection problems, its performance in the problem is evaluated and compared

to that of likelihood detectors applicable to the problems.
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3.4.1 Detection of a Sine Wave of Known Phese
in Additive Noise - General Case

For this general problem, it has been shown, see Eq. (A-3) in Appendix

A, that
1 5gt) = - £ (y) (3.4-1)
#®  |g., oY '
Thus
x[sn(n)] =4 fo‘?(n) (3.4-2)

The efficacy of the likelihood detector appropriate for the problem is
given by Eq. (B-25) in Appendix B as

3*

K =1 (3.4-3)
Therefore, the asymptotic relative efficiency is

ARE = b1 (M) (3.4-4)

¥*
s, (M), T*_

It is seen fram Eq. (3.4-4) above that the relative information rate of
the median detector, with respect to the applicable likelihood detector
for this general problem, may be anything from zero to infinity dependirg
on the probability density fo(y) under no-signal condiiions. However,
Hodges and iehman (29) have shown that for a probability density fo(z)
which is non-i- .easing on either side of its median, the ARE is never

less than 1/3, and this ower bound is atteined when fo(x) is rectangular.

3.4.2 Detection of a 3ine Wave of Known Phase in Additive Gaussian Noise

This problem is a specific case of the previous general detection

problem, with fo(y) given by Eq. (A-4) as
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2

fo(y) s:}t_—__e— % ~-®w<y<w (}.k-S)
an

b

thus, using Eq. (3.4-2) we obtain

2
Ks_(0)] = & £ 200 (3.5-6)

"
3

The asymptotic relative efficiency is obtained, using Eq. (3.k-k), as

ARE = ...2. (5‘“'7)
11

*
sn(u), Ln
= 0.637

3.4.3 Detection of a Sine Wave of Known Phase in Additive Gaussian and
Impulse Noise

This probler also is a specific case of the general problem. Hence,

using Eq. (A-6) in Egs. (3.4-2) and (3.4-4), we obtain

K(s_(M)] = b 2’ (3.4.8)

)
)

L_l (3.4-9)

r( 2
ARE. AN

(e iV ]

N\

o T
= ¢ —

3

VR
o} [

and

For ¢ = 2, we obtain the ssymptotic relative efficiency for gaussian noise
only. This is, as was found previously, equal to 0.6k. However, for c = 1,
we obtain an asymptotic relative efficiency equal to 2.00; that is, for a
purely exponential asnsity characterizing the additive combination of

impulse and faussian noise, the median detector is twice as efficient as
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the likelihood <detector designed under the gaussian assumption. The latter

is a significant result. It points out that in the presence of cdditive

gaussian and impulse noise — a cambination found in many channels (11, 2k) —

it is advisable to utilize a median detector rather than a likelihood

detector designed under the likelihood assumption.

3.4.4 Detection of a Sine Wave of Unknown Phase in Additive Gaussian Noise

In this problem we have from Eqs. (A-1%) and (A-11) that

a G(y) s
de = e 202’

- Y - <y <® (2.4-10)
=0 \/21702

and M = 0 by symmetry of fo(y). Thus, using Eq. (3.3-13) we see that

d Ge(M)

K =Lk ——E-é——— (5.1&-11)

and consequently

ARE (3.4-12)

5, (1), L: =0
In detecting a sine wave of unknown phase in additive gaussian
noise, we may improve the efficiency of the distribution-free detector
based on the test statistic Sn(M) by proceeding in any of the following
ways. We may discerd the phase information by predetection processing
the incoming waveform, e.g. envelope processing; or, we may change the
specified quantile M to another specified quantile so that the detection

efficiency increases and the detector still remains distribution-free.
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If the distributions are known, then we may chccse the threshold so that
we maximize the ARE (16), thus obtaining an optimm coincidence procedure.
However, it must be stressed that the last procedure regiires complete
knowledge of the first-order distributions. Thus, it does not apply to

the detection problems with which this work is concerned.

3.4.5 Eavelope Detection of a Sine Wave in Narrow-Band Gaussian Koise

Since the phase of the sine-wave is unknown, we msy proceed to
discard the phase information by enveiope predetection processing the
input waveform in an effort to improve the information rate of the

detector. In this case, using Eq. (A-19) in Eq. (3.3-13), we obtain

Mmoo "MIZ;'
K(s ()] = b —u;re o ] (3.4-13)

where M is given by
2

M
_2_=f X, . & (3.4-14)
o 7
thus
K(S_(M)] = 0.48 (3.4-15)
n

From Eq. (B-43) and Eq. (3.4-15) we obtain the asymptotic relative

efficiency of the median detector with respect to the likelihood detector

ARE * = 0.48 (3.4-16)

5. (M), .

Thus, the median detector is approximately half as efficient as the

likelihood detector for this problem.
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3.4.6 Square-Law Detection of a Sine Wave in Narrov-Band Additive
Geussian Noise

It is seen from Eq. (A-23) that

d Go(y)
de

= -y e- ’ y > 0 (3-“-17)

=0 5 y<o

Substitutirng this in Eq. (3.3-1)) we obtain the statistic efficacy

K(s_(W)] = e 9’2"2 (3.4-18)

wvhere M the median under no-signal conditions is given by

M
%. f eV 4y (3.4-19)
0
thus
K[8_(M)] = 0.48 (3.4-20)

Using Eq. (3.4-20) and Eq. (B-51) we obtain the asymptotic relative

efficiency

ARE L% = 0-48 (3.4-21)
n

s, (%),

It is the same as that obtained by envelope predetection processing the

input waveform.

3.4L.7 Envelope Detection of Narrow-Band White Gaussian Signal in Additive
White Gaussian Noise

From Eq. (A-33) we obtain that




» ¥20 (3"“22)

X
Hh . 032
K=k h0'2 (3.4-23)
where the median M under no-signal conditions is given by
2
M - A
1 20, 2
5= f L "« (3.4-24)
o °x
thus
K(S_(M)] = 0.48 (3.4-25)

Using Eq. (3.4-25) and Eq. (B-62) we obtain the asymptotic relative

efficiency

ARE = 0.48 (3.4-26)

s, ), Iy

Thus, the median detector is approximately half =3 efficient as the

likelihood detector for this problem.

3.4.8 Square-Law Det. rtion of Narrow-Band White Gauasian Signal
in Additive White Gaussian Nolse

Using Egs. (A-35), (A-38) in Eq. (3.3-13) we obtain

M
2

K[Sn(M)] = L —§;~ e (3.4-27)
%
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ko
where the median M is given by
I A
M o 2
1. 2 LI -
1. f e (3.4-28)
o %
thus
K[s_(M)] = 0.48 (3.4-29)

Using Eq. (3.4-29) and Eq. (B-64) we obtain the asymptotic relative

efficiency

AREsn o, L: = 0.48 (3.4-30)

It is the same as that obtzined by envelope predetection processing the

input waveform.

3.5 Summary of Results

The median detector was found to possess many important properties.

It wvas shown that the median detector is distribution-free in the sense

that its false-alarm rate is constant, independent of the channel statistics

as long as the median under no-signal conditions is known. It was also
seen that the multiplicative disturbance does not affect the distributicn-
free nature of the median detector. Thus, as long as the non-station-
arity of the channel statistics is confined to the statistics of the
multiplicative disturbance, the distribution-free nature and the structure
of the median detector are not affected. However, the detection proba-
bility of the detector does depend on the channel statistics.

In the case of the coherent detection of a sine wave in additive

gaussian noise and no multiplicative disturbance, the information rate of
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Fig. 5. Asymptotic Relative Efficlency vs. Parameter c in the
Coherent Detection of & Sine Wave in Impulse and
Gaussian Noise.
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.he median detector was found to be 64§ of the information rate of the
optimmm likelihood detactor. Or, in terms of the input signal-to-noise
ratic, the optimun detector would require an input signai-to-noise
ratio that is 80% of that required by the median detector or the sare
probability of error with the same number of samples. Tf the input
waveform iy predetection envelope or square-law processed, then the
information rate cf the median detector is 48% of the information rate
of the optimum likelihood detector. Or, in terme of inpat signal-to-
noise ratio, the likelihood detector would require an input signal-to-
noise ratio that is 704 of that required by the median detector for the
same probatility of error and same number of samples.

A significant result appears when the channel statistics include
additive disturbance — that is, an additive combination of gaussian
and impulse noise. For this case, the information rate of the median
detector may exceed that of the likelihood detector designed under the
gaussian assumption and used in this prcblem. In fact, if the para-
meter ¢ of the gaussian and impulse noise distribution is equal to one,
the median detector information rate is twice that of the likelihood
detector. Thus, the likelihood detector sould require twice as many
samples as the median detector to achieve the same error probability
for the same input signal-to-noise ratio. Or, the median detector
now would require a signal-to-noise ratio only 70% of that required
by the likelihood detector for the same information rate and proba-
bility of error.

The results obtained in this chapter concerning the detection of

a eine wave in gaussian noise are plotted in Fig. 4 while those
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concerning the detection of a sire w-ve i1 gaussidn and impulse noise
«re shown in Fig. 6. The result: pertaining t¢ the detection

of a stochastic signal in noise are plotted in Pig. 7. A graphical
comparison of the performances, for various ncise statistics, of the
median detecto£ in the detection of a sine wave of known phase in
additive noise is given in Fig. 6.

From the results obtained ia ihla chapter, it is con.luded that
the ugse of the median detector entails only a small loss in ef-
ficiency for guassian channel statistics; while in the presence of
impuise noise, the use of the median detector may leed to higher ef-
ficiency depending on the distribution of the gaussian and impulse
noige. In Iact, the greater the impulse noise content, the higher
the median detector efficiency. Moreover, the invarisnt structure
in the phase of multiplicative disturbance,whether stationary or
non-stationary, and the distribution-free nature of the false-alarm

rate of the median detector add greatly to its appeal.
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Chapter 4

LEARNING MEDIAN DETECTOR

4.1 Introduction

The median detector investigated in Chapter 3 tests for the
presence of the signal by testing for a change in median under signal
and under no-signal conditions. To do so, it utilizes a data sample
which is compar2d with the mediar under no-signal conditions, the latter
assumed to be known. However, knovwledge of the median under no-signal
conditions is not alweys forthcoming and the assumption of known median,
in many practical cases, is not justified. For example, the median will
be unknown when the detector is placed in an unknown enviromment and
immediate operation of the detector is desired. In this situation, the
detector must, learn the unknown median while it is operating. The median
detector will also have to go through a learning phase from tize to time
vhen the median is varying rather slowly with time. It is this learning
phase of operation of the median detector that we are concerned with in
this chapter.

In the present chapter, for stationary or at most quasi-stationary
medians, the mediw:. detector test statistic is modified so that it learns
the unknown medien. To do so, the modified test statistic utilizes an
estimator of the median. Conditions under which the modified test
stetistic remains distribution-free are obtained, and the learning nature
of the detector based on the modified statistic is investigated. The

learning 3etector is then applied to detection problems to which it 1
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applicable, and its performance and learning efficiency are obtained and

compared to those of the comparable likelihood detectors.

4.2 The Modified Test Statistic

The learning median detector is bafed on a test statistic that is a
mod!fied version of the median detector test statistic. The modified
statistic is

n
5,0 =2 ) (s, - ) (b.2-1)
i=1

where ﬁi is an estimate, obtained from the reference waveform N(t), of
the unknowr median of the additive disturbance under no-signal conditions.
The function c{z) was defined previously. The test statistic as defined
above is operating on the input waveforms Y(t) and N(t) in the same

manner as the system shown in Fig. 8.

Y(t), Z(t) | Half-Wave [C(t) c(t,) Binary ‘ sn(ﬁ)
—p Adder (——p mﬁz::‘. ! Sampler |y Integrator e
.
Mi ’
Median ).((ti) Sampler )
Estimator -

Fig. 8. Block Diagram of L arning Median Detector

The median estimate M, obtained f.cm N(t) is first subtracted from

the data sample function Y(t), and the resulting waveform Z(t) is applied
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to an ideal nalf-wave limiter. The output of this limiter is then sampled -

n times, and the samples averaged to yleld Sn(ﬁ).

The test statistic Sn(ﬁ) u.i:izes the reference sample function to
estimate the unknown median under no-signal conditions, the assumption
again being made that the medians of the reference and data samples are
the same under no-signal conditions. In effect, the estimates of the
median serve as the reference sample function for the modified test
c.atistic. The conditions under which the medians will be the same were
discussed in Chapter 3.

In utilizing the modified test statistic, the m reference samples
ere divided into n groups of %-samples each. From each of these n groups
an estimate of the unknown median M is obtained. Each of these median
estimates is assoclated with only one data semple. Thus, the median
estimate ﬂi is associeted with the data semple Yye In this mannei, for
independent reference and data samples, c(Yi - &1) and c(YJ - ﬁj) are
incdependent random veriables. The latter results in expressions for the
mean and variance of Sn(ﬁ) under no-signal conditions that are
distribution-free for a wide class of distribution functions. Neverthe-
less, it must be pointed out that the estimating procedure proposed above

is by no means the most efficient one.

L.2.1 Conditions for Distribution-free Modified Test Statistic

The modified test statistic false-alarm rate will be asymptotically
distribution-free, provided the mean and variance of the test statistic
are distribution-free under no-signal ccuditions. For channels with

first order statistics that are stationary or quasi-stationary under
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no-signal conditions, the mean and variance under no-signal conditions

are
n

2 (5,001 =1 ) = le(x, - i) (v.2-2)
i=1

n
1
== Z (1 - F,(0)]
1=l

=1 - rz(o)

and

F (0) [1 - F (0)]

- (4.2-3)

0, 18, (M)] =

X 4 = My, and F;(z) is the distribution function of 2 under

no-signal conditions. From the above expressions for the mean and

vhere Z, =Y

variance, it is seen that a necessary and sufficient condition for the
modified test statistic to be distribution-free is that zero be a
specified quantile of the distribution of Z, regardless of the channel
statistics. A sufficlent condition for this to be true is given by the
following theoren.

Theorem 4.1

For channels with symmetrical first order statistics under no-signal




conditions, the random variable Z,, 1 =1, 2, ..., n, has a median of

i)
zero.
Proof:
The random variable Z:l was defined above as
Zi = Yi - “1 (402"!‘)

Thus, the probability density function of Zi given by the integrel

£, (1) = [ 5(x) g,z + x) ax (4.2-5)

vhere go(y) and fM(x) are, respectively, the probability densities of Y,
al.. ;(’ Fur o mpe.ricul firs. order channel s.atistice, go(y’) and the
prcbab 1it  de..sity fo(x) 1 X. arc symmetrica’. It is well k.own (30)
that for symmetrical densities, the mean and median coincide. Thus, in
the case of sywmetrical fo(x), the sam; ~ . may be chosen as the
estimator of the unknown median. The probability density function of the
sample mean for large number of samples is gaussian with mean equal to

the unknown median M; that is, for reference and data samples with

identical medians under no-signal conditions, both ru(x) and go(y) are

symmetrical about the median M. Thus, Yi and being symmetrical

1’

about the same point, have equal means; and Z,6, defined as the difference

1,
between the two, has a mean of zero. To prove that Z1 has also a zero
mediar, it is only necessary to prove that the probability density of Zi

is symmetrical. The random variable may be expressed as




(&.2-6)

=0 -V

and the probebility demsity of Z, is given by
£, ® = [ 5 g m o (k.2-7)

vhere the densities fu(v) and go(v} of the random varisbles V, and U,

respectively, are even functions. The density f. 1(z) may be written

0 ~
£, () - [ apetmes [T amegema @2
- 0
and
0 '
L [ amegamas [Camsame e
- 0
- 0
= f rM(-v) go(-z-w) aw +f f"(-w) go(-z-v)dw
0 - ®

i

, 00 0
J[ fu(v) go(zw) dw + f f)l(") go(zw) dw

L

&

fzi(z)

It is concluded from By. (4.2-9) that fy,(z) 1s symmetrical about zero;
thus, it has a median of zers. This completes the proof.

The above theorem establighes the distribution-free nature of the
modified test statistic for a wide class of shannels, namely the class
with symmetrical first order statistics under no-signal conditions.

For symmetrical first order statistics, the mean and variance under

no-signal conditions are
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Eo[sn(i)] =1 - F,0) (4.2-10)

e

and
F,(0)(1 - F,(0)]
n

2 Fy
o, [8,(K)] = (4.2-11)
_ 1
=In
Thus, the modified test statistic has asymptotically the same distribution

under no-signal conditions as the median detector test statistic.

4.,2.2 The Modified Test Statistic Efficacy
The mean and variance of Sq(ﬁ) under signal conditions are

n
Ee[sn(ﬁ)] =-x11- y Eei [c(ari - ii)] (4.2-12)
1=1
L N
= 'xli Py > M)
1=1

a By(x) a "ei"’)

::l;u—- :s';n—-
it ETIIN Rl B
r\a
8 8
—

1- Gei(x)] a R(x)

L]
5 I
~13=

11 - [ 6, (x) @ B(x)]

i

"
o 3 1o
[\/J;
L)
P
D
[y
p -




b

and

n
18,001 =35 ) ogf Loty - B,)) (.2-13)
i=1

,.1.2. Z [JFGei"‘) R (x)][1 - fee (x) ag,(x)]
T oA :

A

n

-5 ; p(e,) [1 - p(s,)]

Applying the mean value theorem (23) to G, (y), we obtain in the weak
i

:l (k.2-14)
6 =0

] (4.2-15)
6 =0

Substituting this in Eqs. (4.2-12) and (4.2-13) we obtain
ar, (x
om0 M ]

A n n a6
Byls (1 -2 ) |1 - [r )2 Y [f ~
- a pu(x)] (k.2-16)

signal case

d G, (y)
Gai(y) -G (y) =9, [—-a-g——-

or, since Go(y) = Fo(y), we have

\ a Gy(y)
G, (1) - B,(x) = o, [ T

i=l i=l

- - 4G (x)
- E (8 ()] - 3 [f gex

and
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n n n 2
oel1a, 001 - L ) [lo, () ane) - 4 ) [ [0, () ano)
i=] i=l

RS [ 700 o - [ apm]  G2am
i=1

n
L dG, (x) 2
1 2 2]
- 0 e — dp()
“2121 1 B fg.o M
. - a6 (x) 2
=o°2[3n(ﬂ)} -%82 f—%a— O-Od rn(x)

where 8 and 92 vere defined in Chapter 2, respectively, o ik =econ and

mean-:zquare volue of the signal-to-noise ratio 6.

Utilizing Eqs. (4.2-11) and (4.2-16), we obtain the efficacy of Sn(ﬁ)

aG
K(M) = b f--g-(;‘-)-

2
d !'K(x) (4.2-18)

@ =0

It will be shown in the next section that all of the performance
indices of the detector utilizing the modified test statisti. are
completely specified by the modified test statistic efficacy. Thus, the
learning nature of tiie detector may be examined by investigating the
convergence properties of the efficacy. In the limit of large number of

estimating samples, the density f“(x) of the median estimator tends to

an inpulse function

2
(0]
limtt £,(x) = Lntt N (¥, -;—) (4.2-19)
L B e n
n - -
= 8(x - M)

+ it S

s B T O

§ o lpy
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In the same 1iait, the efficacy becomes
) aGy(x) T
limit K(M)= limit & Jf ) d Fh(x) (4.2-20)
6 =0 _J
E - » ! —
n n
[ a6(x) :
=4 J 55 8(x-M) dx
8 =0
Fdﬂb(u) 2
=k
® . _ o
b
= K(M)

It is seen from Eq. (4.2-20) that the performance of the detector btased
on the modified statistic improves as the number of estimating samples
increases snd, in the limit, the modified median decector is as
efficient as the median detector. Thus, the modified detector consti-
tutes & learning system (13) with respect to an unknown, stationary or
quasi-stationary median == hence, the name "learning median detector”

for the modified detector.

4.2.3 Performence Indices

The modified test statistic is equsal to & sum of i.dependent
biromially distributed random variables; hence it follows from the
central 1imit theorem (22) that Bn(ﬁ) 1s asymptotically gaussian under
signal and urler no-signal conditions. The modified statistic then
satisfies condition (A). Condition (D) is fulfilled in the weak signal

case investigeted here. In the weak signal case, the existence of the
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efficacy is the only requirement for the statistic to satisfy conditions

(13)2 ()c) and (E). The efficacy, given by Bg. (4.2-18), will exist if

dG_{x

ga exists «= that is8, if the median detector efficacy exists.
6 =0

The latter exists fcr continuous parameter, cont.inuous density functions

ge(x). It is seen from Eq. (4.2-11) that Sn(ﬁ) satisfies condition (F)
alwvays. The conditions (E) and (F) establish the consistency of Sn(ﬁ).
Since the modified statistic satisfies all of conditions (A)-(F),

its performance relation and output signal-to-noise ratio are given b

o 2 .

;PdGGI\XI . '2 ’l -4 €

N J —a dFM(x) 6°n = 2| ert (1-2a) + err “(1-28)| (4.2-21)
6=

end

dGe(x)—

(%3‘25“’5U a8

dFM(x) (k.2-22)

6=0

The efficacy may also be used, as shown in Chapter 2, to obtain the
asymptotic relative efficiency of Sn(ﬁ) with respect to & likelihood
s.ati tic. Tuus, the efficac K(M) completely specifies all of the

performance indices of the learning median detector for symuetrical

e e s

first crder channel statistics.

4 3 opi cat.ons

In the rollowing, the learning median detector is applied to detec-
tion problems with symmetrical first order distributions for which it

remeins distribution~free.

4L.3.1 Detection of a Sine Wave in Additive Noise

For this general problem we have
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a6, (y)

3 (2]

' R —— qz= - f (y) ("‘73'1)
ae 6=0 o}

and using this in E;. (4.2-18) we obtein

K(M) = 4 [ffo(x) a Fx(x)r (k.3-2)

4k,3.2 Detecticn of z Sine Wave in Additive Gaussian Noise

T1is is a specific case of the previous detection provlem vhere

2
X
2

fo(x) .o s -mgx<™® (4.3-3)
2x

Thus, the efficacy is

. 2
g K(Q) =4 f fo(x) fM(x) dx] (4.3-%)

b

2
ZﬂUM

oy L fe_%xz(h;iz)dx}z

Using Eqs. (3.4-6) and (k.3-4) we obtain the asymptotic relative effi-
clency of the learning median detector with respect to the median

detector. The ARE is

AREg (i), ) " T ) (4.3-5)
m
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The asymptotic relative efficiency of the learning median detector with

respect to the learning optimm likelihood detector is obtained using

Eqs. (4.3-4) end (B-18). It is given by
A A 2
AREg (), LA(K) ™ x (-3-6)

The above result indicates that the learning median and likelihood
detectors, botl: utilizing the sample mean as an estimator of the unknown
median, are equally efficient in their learning the median, in the case

of gaussian statistics.

4,3.3 Detection of a Sine Wave in Additive Combinstion of Geussian and
Impulse Noise

This is also a specific case of the general problem discussed in

Section 4.3.1. For the present problem fo(x) is

 -E
fo(x) ‘:,."2- e ’ -®<y«<®» (4.3-7)

The efficacy of the learning median detector for large number of

estimating samples % is given by

o -J- | 2
K(M) = 4 rf j,'_z- e 2 | dFM(x)} (4.3-8)
LJ .
- X
RN,
-9 V2 2x0y
2

=2 e l:l - erf (oM)]

a
2 e2 m [1 i erf(\[é)}z
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Using Eqp. (3.4-8) and (4.3-8) we obtain the asymptotic relative efficiency
of the learning median detector with respect to the median detector for

known median. The ARE is given by

msn(‘i)’sn(“) =e : [1 - erf (\rg )]2 (4.3-9)

B i

The asymptotic relative efficiency of tre learning median detector, with
respect to the learning likelihood detector designed under the gaussian
assumption, is obteined utilizing Eqs. (4.3-8) and Eq. (B-18). The ARE
is

I

ARE, /2y .%.8\ = 2e (4.3-10)
Sn(H),LD(M) [1 A 2]

The above expression for ARE indicates that the learning median detector
and learning likelihood detector, both utilizing the samplv mean as an
estimator of the unknown median, are not equally efficient in learning
the median of a cambination of gaussian and impulse noise. Specifically,
it is seen that the learring likelihood detector is more efficient in

learning the unknown median than the learning median detector.

4.4 Summary of Results
In this chapter, the statistic on which the median detector is

based was modified so that it learns tne unknown median. The detector
based on the modified statistic was shown to be a learning system with
respect to the unknown median, since its performance improves and

converges to the performance of the median devector with known median,
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as the learning time increas=i. The learning median detector was also
shown to be distribution-free for a wide class of detection problems a
namely, the clasr with symmetrical first order distributionms.

The learr..ng median detector was applied to the detection of a
sine wave of known phase in gaussian noise and also in a combination of
gaussian and impulse noise. In the gaussian case, the learning median
detector and the learning optimum likelihood detector are equally
efficient in learning the unknown median. The efficacy of the learning
median detector converges rapidly with increasing number of estimating
samples to the efficacy of the median detector with known median.

These results are presented in Fig. 9. When impulse noise is present
in the channel the learning median detector is not as efficient as the
learning likelihood detector in learning the unknown median. In this
case the learning median detector efficacy does not converge to the
median detector efficacy as rapidly as in the detection problem with
geaussian noise only. However, in the presence of impulse noise, the
information efficiency of the learning median detector is greater than
that of the learning likelihood detector even for a moderate number of
estimating samples. These results are presented in Fig. 10. A graphical
presentation of the functional relation between the learning median
detector probability of error and input signal-to-noise ratio is given
in Fig. 11 for the case of gasussian channel statistics and in Fig. 12
for a combination of impulse and gaussian channel statistics.

From the results obtainsd in this chapter, it is concluded that use
of the learning median detector instead of the learning likelihood

detector entails only a small loss of detection efMciency for gaussian
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channel statistics; while if impulse noise is present in the chanrel,
use of the learning median detector results in higher detection efficiency.
Moreover, the learning median detector is distribution-free for symmetrical
first order distributions, hence applicable even when the form of the

distributions is unknown.
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Chapter 5

ADAPTIVE MEDIAR DETECTOR

5.1 Introduction

The distribution-free coincidence detection procedures investigated
in the previous chapters test for the presence of the signal by teating
for a change in median under signal and under no-signal conditions. In
particular, the median detector is applicable to the detection problem
when the median under no-signal conditions is stationary or at most quasi-
stationary, and it requires that the value of the median under no-signali
conditions b2 known in order that its false-alarm rate remain distribution-
free. The learning median detector does not require knowledge of the
median, instead it utilizes an estimate of the unknown median for station-
ary or at most quasi-stationary medians. However, the learning median
detector remains distribution-free only for the class of detection problems
with symmetrical first order statistics under no-signal ccnditions. Thus,
us2 of the learning median detector instead of the median detector is,
in effect, equivalent to replacing the restriction of known medians by
the restriction of symmetrical first order channel statistics. To summa-
rize, the median and learning median detectors remain distribution-free
only when a) the median under no-signal conditions is stationary or at
most quasi-stationary and b) when the median is known or when the first
order channel statistics are symmetricel under no-signal conditions.
However, there exist detection problems in which the location parameters,

in particular the median, are non-statiocnary and, morecover, their time-
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/ariations are unknown. In addition, not all detection problems have
synmetrical first order statistics. Hence, the need exists for a dis-
tribution-free detection procedure epplicable ever when the noise meaians
are unknown and non-stationary and one that remains distributiocn-free

for a wider class of detection problems.

In the present chapter, a modified version of the median detector

that is adaptive to rapid changes in the median under no-signal conditions

is proposed and investigated. The conditions under which the adaptive
median detector remains distribution-free are obtained. It is found that
the adaptive median detector remains distribution-free for a much wider
class of detection problems than the median detector or the learning
median detector. The adaptive median detector is then applied to various
detection problems of interest, and its performance is obtained and
compared to that of the other distribution-free detectors and to that

of comparable likelihood detectors.

$.2 The Modified Test Statistic

The adaptive median detector is based on a modified version of the

median detector test statistic. The modified test statistic is

n
1 '
s, == cly; - %) (5.2-1)
i=1
whers= yi and xi, i=1,2, ..., n, are the values of the data and

reference samples obtained, respectively, from Y(t) and N(t). The test

statistic as defined above is operating on the input waveforms Y(t) and

~ g e Sl omanl o—— ) g ——— ovemed
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N(t) in the same manner as the system in Fig. i3.

Half-Wave C(tl‘ Ic(ti) 8

Sampler >+ Binary —
Limiter Integration

1 N(t)

Fig. 13. Block Diagram of Adaptive Median Detector
The reference szample function N{t) is first subtracted from the data
sample function Y(t), and the resulting waveform Z(t) is then applied
to an ideal half-wave limiter. The output of the limiter is then
sampled and the samples averaged to yield Sn-

Application of the adaptive median detector requires, as did the
median detectors discussed previously, that the members of each sample
pair (Yi , Xi) have identical medians. This will be true, for instance,
if the additive disturoances in the reference and data channels have
identical first order statistics. However, for non-stationary channel
statistics, the first order statistics, and hence the median, may vary

from sample pair to sample pair.

5.2.1 Conditions for Distribution-free Modified Test Statistic

The modified test statistic false-alarm rate will be asymptotically

distribution-free, provided the mean and variance of the test statistic

are distribution-free under no-signal conditions. The mean and variance

under no-signai uditions are

SRR NI TG D e
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n
Bf5,) =1 ) Efe(r,x,)] (5.2-2)
) iml
n
-1 ) e etz
i=]
n
1
= o z P[Zi > 0]
i=1
n
1
== z (1- in(O)]
i=}
and
n
0215, =25 ) (1 - ¥, (0)F, (o) (5.2-3)
n 4 i i

where Zi =Y -X,, and F, is the distribution of Z, under no-signal

i i’ Zi i
conditions. From the above expressions for the mean and variance, it is
noted that a necessary and sufficient condition for the modified test
statistic to be distribution-free is that zero be a aspecified quantile of

the distribution of 2,, 1 = 1, 2, ..., n, regardless of the channel

i)

statistics. 1In particular, if zero is the median of Zi’ then the distri-
A

bution of § 18 the same as the distribution of Sn(M) and Sn(M), under

no-signal conditions. A sufficient conditicn for Z‘l to have a zero median

is given by the following theorem

Theorem 5.1
For detection problems with reference and data channels possessing

symmetrical first order statistics under no-signal conditions, the random
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variable Zi, i=1,2, ..., n, has zero median.

Proof:

The proof is the same as tuat of Theorem 4.1, where one substitutes

fo (x), the distribution of xi, i=1, 2, ..., n, under no-signal conditions,

i
in place of fx(x).

The above theorem establishes the distribution-free nature of tue
adaptive medien detector false-alarm rate for the class of det;ction
problems with symmetrical first-order statistics and otherwise arbitrary
statistics. In particular, the distribution of Yi may differ from that
of Xi- £ wider, and perhaps a more practicel, class of detection problems
for which the adaptive median detector remains distribution-free is given

by the following theorem.

Theoren 5.2
For detection problems with reference and data channels possessing
identical first order statistics under no-signal conditions, the random

variable Zi’ i=1,2, ..., n, nas zero medien.

Proof':
Under the conditions of the theorem, £, (x) = &, (x), thus the value

i i

at zeroc of the distridbution of Zi is

in(o) = P(2, > 0) (5.2-%)

= P(Yi > xi)

= f“f“ d Foi(x) d Goi(y)
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= f [1- Poi(x)] a Poi(X)
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This completes the proof.

It is seen that theorem 5.2 establishes the distribution-free
nature of the adaptive median detector test statistic for the class of
detection problems with identical reference and data channel first
order statistics.

Thus, it is seen from the above theorems that regardless of whether
the channel statistics are stationary or non-stationary, as long as the
first order statistics of the reference and data channels are either
symmetrical or identical under no-signal conditions, the adaptive
median detector false-alarm rate is distribution-free. The mean and

variance under no-signal conditions are

n
1
EO[Sn] = Z (1 - in(o)] (5.2-5)
i=1
1
"3
n
o2 (8,) =3 ) [1-F ) (% (o)) (5.2-6)
o i i
1l
iy

5.2.2 The Modified Test Statistic Efficacy

The efficacy of the modified statistic will be obtained for the
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class of detection problems with first order stationary statistics,
under no-signal conditions. Under signal conditions, it will be
assumed that the distribution of Yi differs from the distribution of
X g 4 1, only through the signal-to-noise ratio. This assumption
is satisfied in many detection problems of interest.

For this class of detection problems, the mean and variance under

signal conditions are

n
Bis,d =2 ) B Le(y - )3 (5.2-7)
i=1
n
1
-2 Z PlY, >X,]
{=1
n o0
1
.1 ; j; 2 - 6 (0] 8 7,(x)
8% i [1 -f Gei(x) 4 F_(x)]
f=1
n
"?li Z p(9,)
1=1
and
2. 1 T o
oy [8,) ==, L oy [e(Yy - X)) (5.2-8)
n o1 i
n
1
x = (e,){1 - p(8,)
2 121 p(6,)[1 - p(8,)]

Proceeding as in Chapter 4, we obtain, for the weak signal case and
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data and reference channels with identical first order statistics under
no-signal conditions, that the mean and variance under signal conditions

are

d G.(x)
- 9
Egl8,] =Es8;] -9 [)p ~30

— d G.(x) 12
062 [s,] = °02l3n3 - % g2 U ‘Eg—" . d Fo(x)J (5.2-10)

where © and 92 are, respectively, the mean and mean-square values of the

oo d Fo(x)] (5.2-9)

and

signal-to-noise ratio.

Utilizing Eqs. (5.2-6) and (5.2-9), we obtain the efficacy of Sn

4 G, (x)
L]
K=l [J[ ——

It is shown in the following section that the performance indices

2
a F_(x) J (5.2-11)

6=0

are completely specified by the efficacy. Thus, the adaptive nature of the
detector may be established by observing the behavior of the efficacy

with increasing number of reference samples and fixed number of data
samples. It is seen, from Eq. (5.2-11), that the efficacy remains fixed
under the above conditions; therefore, the detector is indeed adaptive
with respect to an unknown median (13) — hence, the name "adaptive

detector" for the modified detectcr.

5.2.3 Performance Indices

By applying the central limit theorem to Sn’ it is seen that the
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test statistic satisfies condition (A). Condition (D) is fulfilled

in the weak signal case investigate& here. Eq. (5.2-6) reveals that
8 satisfies condition {F). In the weak signal case and under the con-
ditions for which tke efficacy given by Eq. (5.2-11) was derived, the

existence of the efficacy insures that the test statistic satisfies

a Ge(x)
de

exists — that is, if the median detector efficacy exists. This

conditions (B), (C) and (E). The efficacy will exist if
6=0

can ?e)shown as follows. If the median detector efficacy exists, then
d G, (x
0

—30 exists, hence

=0

d Ge(x)
ae

<A (5.2-12)

0=0

where A is a finite number. Thus,

<h [f Ad r‘o(x)]2

L A°

]2
d F_(x) ] (5.2-13)

<

and the adaptive median detecior efficacy exists also.

Since the modified statistic satisfies all of conditions (A)-(F),
its performance relation and output signal-to-noise ratio for the weak
signal case and data and reference channels with identical, stationary

first order statistics, under no-signal conditions, are given by

- ku?v’!l ',U
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d G (x) 2 5
b [ —a§—x*l°=0 2 Fo(x)} n = E{erf‘l (1-2a) + erf‘l(l-za)]
(5.2-1i)

( ) 2 GJn[f : Gekx) d Fo(x)] (

The efficacy may also be used, as shown in Chapter 2, t> cbtain the

and

N
n
§
[
\n
S

6=0

asymptotic relative effi.<ency of Sn with respect to other detectors.
Thus, the efficacy K completely specifies all of the performance indices
of the adaptive median detector for the conditions for which the efficacy

given in Eq. {5.2-11) is applicable.

5.3 Applications

In the following, the median detector is applied to specific detection
problems; its performance in the problems is evaluated end compared to
that of other distributicn-free detectors and to that of comparable likeli-
hood detectors.

5.3.1 Detection of a Sine Wave of Known Phase in Additive Noise-General
Case

For this generel detection problem we have

d Ge(x)

—— = - £ (x) (5.3-1)

8=0

and using this in Eq. (5.2-11) we obtain
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K=b [f £ “(x) ax| (5.3-2)
The efficac; of the likelihood detector, appropriate to the problem, is
iven oy Eq. (B-33) as
(5.3-3)

Thus, the asymptotic relative efficiency of the adaptive median detector

with respect to the comparable likelihood detector is

AREs L ™ 3[ f £,°(x) 61] : (5.3-4)

Pitman (29) has shown that the lowest possible value of the atave
integral squa:ed is equal to 9/125. Thus, for this genersl problem,

the lower bound of the adaptive wmedian detector efficacy is

Kmin. = 0.288 (5.3-5)

and the lower bound of the asymptotic relative efficiency is

ARE. % = 0.576 (5.3-6)

Sn’ N
The asymptotic relative efficiency may be anything from the minimum

given above to infinity, depending on fo(x).

5.5.2 Detection of a Sine Wave of Known Phase in Additive Gaussian Noise

This problem is a specific case Of the previous general detection
problem , with fo(x) given by Eq. (A-%). Utilizing Eq. (A-4) in Eq.

(5.3-2), we obtain
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x=u‘ur%ne : dx] (5.3-7)

'
3t~

Using Eqs. (5.3-7) and {5.3-3) we obtain the asymptotic relative efficiency
of the adaptive median detector with respect to the adaptive optirmum

likelihocd detector. The ARE is

2 ,
ARE, % = — (5.3-8)
Sn,Ln n

The asymptctic relative efficiency of the adaptive median detector with

respect to the median detector is obtained using Eqs. (5.3-7) and (3.4-6).

It is given by

1

n’ ' n
The asymptotic relative efficiency of the adaptive median detector with
respect to the _=zarning median detector is derived using Eqs. (5.3-7)

and (4.3-4). The ARE is
~oe X n
AREsr,sn(m) T2 (3' * m3 (5.3-10)

It is seen from Eq. (5.2-24) that use of the adaptive median detector
instead of the median detector results in reduction of the inrfcrmation
rate by one-half. Use of the adaptive median detector instead of the
learning median detector entails a loss in information rate even for
a small number of estimaiing samples, such as two or three. For esti-
mating sample sizes greater than ten, the information rate is almost

helved.
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5.3.3 Detection of a Sine Wave of Known Phase in Additive Gaussian
and Impulse Noise

This problem also is a specific case of the general problem. Thus,

using Eq. (A-6) in Eqs. (5.3-2) and {(5.3-4), we obtain for c = 1

® 2
K=y 2f R de (5.3-11)
0
=1
T2
and
ARE, I*C 1 (5.3-12)
naun

The asymptotic relative efficiencies of the adaptive median detector
with respect to the median and learning median detectors are obtained
utilizing Eq. (5.3-11) and Zqs. (3.4-8) and (4.38), respectively. The

ARE'g, for ¢ = 1, are

1

ARE s T (5.3-13)
nn
and ) 2& 2
. 1 n
ARESn)Sn(M) = 'E e [ 1l - erfl CJ% >} (5-3-1“)

An examination of the above symptotic relative efficiencies reveals that
in the case of gaussian and impulse noise, the adaptive median detector
is as efficient as the comparable likelihood detector. However, the
adaptive median detector information rate is only 1/4 that of the median
detector. Even for small estimating sample sizes, the information rate

cf the adsptive median detector is smaller than that of the learning median




detector.

5.3.4 Detection of a Sine Wave of Unknown Phase in Additive Gausaian
Noise

Using Bq. (A-14) in Eq. (5.2-11), we obtain

/“ d Ge(x)
L a6

2
K=14 d Fo(x)] (5.3-15)

©=0

=h[fx¢2(0,c)dx]2

=0

The comments made in Chapter 3 regarding this problem are applicable

here glso.

5.3.5 Envelope Detection of a Sine Wave in Narrow-Band Gasussian Noise

Using Eq. (A-19) in Eq. (5.2-11), we obtain

x=u[f x . ° dx} (5.3-16)

= 0.25

Using £gs. (5.3-16) and (3.4-15), we ovtain the asymptotic relative
efficiency of the adaptive median detector with respect to the median

detector. The ARE is

ARE = 0.52 (5.3-17)

8,8, (M)

The asymptotic relative efficiency of the adaptive median detector with
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respect to the camparable likelihood detector is obtained using Eqs.

(5.3-16) and (B-%8). The ARE is

ARES ,L* =1 (5.3-18)
nn

5.3.6 Squarc-Law Detection of a Sine Wave in Narrow-Band Additive
Gaussian Noise

Using Eq. (A-23) in Eq. (5.2-11), we obtain

K = x{ f y e ¥ dy:|2 (5.3-19)
O

= 0.25

and the asymptotic relative efficiencies are as in the previous problem.

5.4 Summary of Results

In this chapter, a modified version of the median detector that
is adaptive to an unknown stationary sr non-stationary median was pro-
posed and investigated. The conditions under which the adaptive median
detector remains distribution-free were also obtained. It was shown
that the adaptive median detector remains distribution-free for two
wide classes of detection problems. Specificaliy, the adaptive median
detector false-alarm rate remains distribution-free for all detection
problems with symmetrical first-order statistics under nc-signal
conditions. It also remains distribution-free for all detection problems
with identical first-order reference and data channel statistics, under
no-signal conditions.

The edaptive median detector was applied to the detection of a sine
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wave in additive noise, and its performance in the problem investigated.

The results of this investigatici av: presented in Table 1.

Table 1

Performance of Adaptive Median Detector inm Detecting

8 Sine Wave in Additive Noise

8ine Wave of Known Phase| 3ine Wave of Unknown Phase
Geussian Koise
Iower | ¢ =2 c=1 Predetection | No Predetection
Bound Processing Processing
K 0.2881 0.318 0.500 0.250 0
ARE; . 0.576 | 0.637 1.C00 1.000 0
n’"n
ARES )8 (M) 0.500 0.250 0.520
n’ n
n
-2— -2
1 nyl ™m n
A 4 n - a
msn’sn(u) 2 (l+ m) -Ee [l er m):l

An examination of the above table reveals that the adeptive median
detector is highly efficient for the detection of a sine-wave in
additive noise of unknown median. Specifically, the adaptive median
letrctor information rate is never less than ' 7.6% of the information
race - f ovNe compirgdble 1fK&Iinéod 1&fector. .. theé ez Hf L oc_ae

;ave £ known phase and guassian noise, thc adaptive median detector
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information rate 1s £3.7% of that of the optimum likelihood detector.
However, when the noise is a cambination of impulse and gaussian noise,
the adaptive median deteztor information rate is equal to the information
rate of the comparable likelihood detector. For the detection problem

of a sine wave of unknown phase in guassian noise and with predetection
processing of the input waveform, the adaptive median detector information
rate i8 equal to that of the adaptive "optimum" likelihood detector.

It is also seen from Table 1 that the adaptive median detector is
less efficient than either the median detector or the learning median
detector. This, however, is expected since the median detector requires
and uses knowledge about the channel statistics, namely the value of the
median of the additive noise, that the adaptive median detector does
not require and does not use. The learning median detector, although
it does not require this additional knowledge of the channel ctatistics,
does require and utilize more reference samples than the adaptive median
detector.

In Figs. 1L and 15, the probability of error of the adaptive median
detector is plotted vs. the input signal-to-noise ratio for all the
detection problems investigated in this chapter.

From the results obtained in this chapter, it is concluded that use
of the adeptive median detector instead of an adaptive likelihood detector
entails either a small loss of detection efficiency or none at all.
Moreover, the adaptive median detector is distribution-free for wide
classes of detection problems, hence applicable even when the form of the

distributions is unknown.




Chapter 6

THE T-DETECTOR

6.1 Introduction

In this chapter, a distribution-free detector of stochastic
signals in noise is proposed and investigated. This is based on
a test statistic that tests for the presence of the signal by
testing for a difference in variance between the reference and
data samples. The test statistic is the so-crlled T-statistic—
hence the name "T-detector” for the distribution-free detector
that utilizes it. In the following, the general properties cf the
T-statistic are given and its efficacy, output signal-to-noise
ratio, and performance relation are obtained. Subsequently, the
T-detector is applied to the detection of a gaussian signal in
gaussian noise, and its performance is evaluated and compared

to that of the optimm detector.

6.2 The T statistic

The T-_et.ctor .s based on the T-statistic first proposed

by Sukhatme (31) and defined as

n m
=2 L Z Vo) (6.2-1)
1=1 3=1

where
0< x‘j < Yy

*(yi’ XJ)=l, if
¥y <x, <0

= 0, otherwise
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Application of the T-statistic to the detection probie.: is based
on the assumption that the variances of the reference and data samples
are the same under no-signal conditions. This will be true, for instance,
if the additive disturbances in the reference and data channe,s have
identical first order statistics under no-signal conditions. In this
investigation, the above condition on the first order statistics will
be assumed. Moreover, the reference and data channel first order
statistics will be assumed stationary or at most quasi-stationary. Thus,
the —andom variables Yi’ i=1,2, ..., nwill have identical first
order distribution functions, as will the random varieaoles X,, j = 1,2,...,

J

nm.

6.2.1 Conditions for Distribution-free Test Statistic

The T-statistic is a modified version of the Wilcoxon-Mann-Whitney
(31) statistic. Mann and Whitney proved (4) the asymptoti~ nromality
of the Wilcoxon statistic under no-signal conditions and Lehman proved
it (4) under signal conditions. Utilizing these results, it can be
shown that the T-statistic is asymptotically normally distributed under
signal and under no-signal ~onditions. Thus, the T-statistic false-
alarm rate will be asymptotically distribution-free if its mean and
variance are distribution-free under no-siénal conditions. The mean
and variance under ro-signal conditions are (31)

© 0

Bz, - f (1 - F_(x)] 4 F_(x) + f F(x) 4 F_(x) (6.2-2)
0 - @




® ® C
=) | - 3R |+ FE )
0 0
1
=F “(o) - Fo(o) +3
and
@ 0
2 1
% [Tmn] ) [q/\ F,aF) 'u/\ F,dF, + (6.2-3)
0 - 00

¢ (n-l){f(1-Fo)2dro+JOF°2dro}+
0 ®

-

+(m~l){Jw FoedFo-f Fodro+1.ll'}+

. e
-(m+n'1){fyoﬁo"f F°dF°}2:l
A g

L L N ORI L S

n-2om+ & ]

+ (1-n) Fo(o) + 15

where Fo(x) is the distribution of the reference and data samples
under no-signal conditions. From the above expressions, it is seen
that a necessary and sufficient condition for the T-statistic false-
alarm rate to be distribution-free is that zero be a specified
quantile of the distribution Fo(x), regardless of the channel
gtatistics. Thus, the T-statistic false-alarm rate will be distri-

bution-free for the class of distribution functions Fo(x) with zero
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median. For :t.ose cistribution functions w.:i:. nun-zers medians, the
medians may bs subtracted out from the incoming reference and data sample
functions so that sampies obtained from the modified sample functions

have zero median. In the latter case, the T-statistic becomes

n m
ra =l ) )y ) (6.2-4)
i=]1 Jj=1
where
v, =¥ - M (6.2-5)

and M and N are the medians of the data and reference zamples under

' v
no-signal conditions. Thus, Y', i=1,2, ..., nand Y&, J=121,2, ..., m ‘

have zero medians.

b —

To sumarize, the T-statistic false-alarm rate will be distribution-

free a) for the class of detection problems with zero medians and b) for

the class of detection problems with non-zero medians provided these

medians are known. With regard to the latter class of detection problems,

it must be pointed out that there exists a subclass that does not require
knowledge of the medians under no-signal conditiona. This is the class
of detection problems with symmetrical first-order statistics under no-
signal conditions. The mean and median for this class of problems
coincide. Thus, the value of the non-zero medians is not required

since the medians can be made zero by subjecting the reference and data

channel sample functions to capacitive filtering prior to their
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examination by the T-detector.
For the case of input reference and data waveforms with zero
medians, the mean and veriance of the T-statistic under no-signal

conditions, obtained from Eqs. (6.2-2) and (6.2-3), are

E[T_(MN)] = (6.2-6)
and
oo‘?['rmn(u,n)] = ’%’l—;z (6.2-7)
1
= th form>>n>>17

6.2.2 The T-Statistic Efficacy

For stationary or quasi-stationary first-order statistics under
signal and under no-signal conditions and for identical reference and
data channel first-order statistics under no-signal conditions, “he

T-statistic mean and variance under signal conditions are (31)

© 0
Ei Ty ) = [ 11 - Gl a5 (0 + [ ogl) ar () (6:2:8)
0 - ®
and o 0
°92[Tmn] = a-nl—- [f Fo(x) dGe(x) f Fo(x) dse(x) + (6.2-9)
0 - ®

+{n - 1) {}/? {1 - Ge(x)]EdFo(x) +~/9 Gez(x) dFo(xi} +
0

- 00

-]

e [ 20 a0 - [ w0+ 1)

- 0

0

S men-1) { f F_(x) 46, (x) f F_(x) ace<x>}2]

0 - ™
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Applying the mean value theorem (23) to Ge(y), we obtain for the weak

a»o:l (6.2-10)

signal case
d Gy(y)
Goly) -6 (y) = @ [ —a—

or, since Go(y) - Fo(y), we have
d G (y)
Ge(y) - FO(Y) = @ [ -—a-g-—"— l 0-0] (6.2-11)

Substituting this in Eq. (6.2-8) we obtain

® 0
Eetrm(u,m)] = f[l - Fo(x)] a Fo(x) + f Fo(x) dFD(x) +
0

O 6 (x) ~ 4G, (x)
0 )
0 [fm T | gy Tl - U P "Fo(")]
0 dGe(x)
= Ej[T_(M,N)] + e omoFo () -
® dG.(x) ;Fm

- f dg 6=0 °(X)] (6.2-12)

0

Using Eqs. (6.2-7) and (6.2-12), we obtain the efficacy of the

T-statistic for m > > n. This is

2
O 46, (x) > 46 (x)
K(M,N) = 48 [f dg i aF_(x) -f —-&—g-f— dFo(x)]
- ® o=0 0 0]
(6.2-13)

6.2.3 Performance Indices

As stated previcusly, the T-statistic is asymptotically normally
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distributed under signal and under no-signal conditiotis; hence, it
satisfies condition (A). Condition (D) is fulfilled in the weak signal
case investigated here. Eg: (6.7°-7) reveals that T (M,K) satisfied
condition (F). In the weak signal case and under the conditions for
vhich the efficacy given by Eq. (6.2-13) was derived, the existence

of the efficacy insures that the test statistic satisfies conditions

. a6, (x)
(B), (C) and (E). The efficacy will exist if Tg-_ exists. -
B=0
The latter bc(scc)mes apparent from an examination of Eq. (6.2-13).
dG_ (x
If dg exists, then the test-statistic satisfies all of

6=) .
cenditions (A)-{F) ‘7 the weak-“signal case. Hence, for data and

‘Teference channels with first-order statistics identical under no-
signal c;nditions and stalionary or quasi-stationary both under signal
and under no-signal conditions, the T-statistic performance relation
and output signal-to-noise ratio are given by

2

0 dGe(x) ) giGe(x) ,
dFo(x)] B3 n=

l‘8|:A/""E'é_—-_'e.zod.i‘o(x)«jq T ae

- 0

o=0

2
= 2 [ erf’l(l-aa) + erf’l(l-aﬁ)] (6.2-14)

dFo(x)]
6=0

and o _ 0 46 ,(x)
( ﬁ)‘eJm{!C 46

~ 4G, (x)

dFo(x) - f _d_g——
=0 0

(6.2-15)

The. efficacy may also be used to obtain the asymptotic relative
efficiency of Tmn(M,N) with respect to other statistics. Thus, the
efficacy specifies all of the performance indices of the T-detector

for the conditions under which the efficacy given in Eq. (6.2-13)
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is applicable.

6.3 Applications

In the following, the T-detector is applied to the detection of a
gaussian signal in gaussian noise; its performance is evaluated and
compared to the performance in the same problem of the optimum likeli-
hood detector. Results concerning the asymptotic relative efficiency
of the T-detector with respect to a particular likelihood detector, in
the general problem of scalar alternatives, are also given.

6.3.1 Detection of Narrow-Band White Gaussian Signal in Additive White
Gaussian Noise

Using Eqs. (A-25) and (A-28) in Eq. (6.2-13) we obtain the T-

statistic efficacy. 'This is

0 0 2
K(M,N) = 48 [ f 2P ax-| 5P dx] (6.3-1)
O - 00
-2
n2

Using Eqs. (6.3.1) and (B-59) we obtain the asymptotic relative efficiency
of the T-detector with respect to the optimm likelihood detector. The

ARE i=

ARE L= 0.61 (6.3-2)
n

Tan M)

6.3.2 T-statistic Performance in the General Froblem of Scalar
Alternatives

The problem of scalar alternatives is one with distributions Fb(x)

and Ge(x), under the hypothesis and under the alternative, respectively,




related as follows
Ge(x) = Fo(e x) (6.3-3)

Sukhatme (31) has obtained in general the asymptotic relative efficiency
of the T-statistic with respect to the variance-ratio F-test, a likelihood
statistic optimum for gaussian statistics. The asymptotic relative

afficiency for the problem of scaler alternatives is given by (31)

© 0 2

. 2 2 1

ARETmn(M’N), p =12 (Bz—l) [\éa x fo (x) an -b/‘ x f° (x) de
(6.3-4)

where
NS O
{x-E(X)) aF

.. f (x-E(0))"aF_(x) .

Z

{ f [x-E(X)? cwo(x)}2

It can be seen from Eq. (6.3-4) that the asymptotic relative efficiency
can be anything from zero to infinity, depending on fo(x). In particular

if fo(x) = % e-le, the ARE is equal to 0.9k.

6.4 Summary of Results

In this chapter, the T-detector for the detection of stochastic
signals in noise was proposed and investigated. It was shown that the
T-detector false-alarm rate can be made distribution-free given the
medians of the reference and data samples under no-signal conditions.
Even in the absence of this minimal information concerning the statistics
of the detection problem, the T-detector false-alarm rate was shown to

be distribution-free for two classes of detzction problems, a) the class
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of detection problems with zero medians under no-signal conditions,
and b) the class of detection problems with symmetrical first-order
statistics under no-signal conditions.

The T-detector was applied to the detection of a gaussian signal
in gaussian noise, and its performance in the problem investigated. It
was found that the T-detector is reasonably efficient for gaussian
statistics and highly efficient for some non-gaussian statistics.
Specifically, the T-detector information rate for the cease of a
gaussian signal in gaussian noise was shown to be 6l$ of that of the
optimum likelihood detector. The results for this problem are presented
graphically in Fig. 16.

From the results obtained here, it is concluded that use of the
T-detector instead of a likelihood detector entails only a small loss
of detection efficiency or gaussian channel statistics; while for non-
gaussian statistics, an increase in efficiency is possible, depending
on fo(x)- Moreover, the T-detector is distribution-free for wide
rlasses of detection probleme, hence applicable even when the form of

the distributions is unknown.

7~




Chapter 7

ADAPTIVE T-DETECTOR

T.1 Introduction

The T-detector investigated in tbe previous chapter can be made
distribution-free prcvided the medians of the reference and data
samples under no-signal conditions are known. The T-detector remains
distribution-free even when the medians are unknown but only for two
limited classes of detection problems, namely, the class of detection
problems with zero medians and the class of problems with symmetrical
first-order reference and data channel statistics under no-signal
conditions. However, the above classes do not include many of the
problems of practical importance. There exist problems in which the
location parameters of the distributions, in particular the medians,
are non-stationary with unknown time variations. In addition, not
in all detection problems are the first order statistics symmetrical
or the medians zero. Hence, the need exists for & distribution-
free detection procedure which is applicable even when the noise
medians are changing and/or unknown and one that remains distribution-
free for a wider cluss of detection problems.

In this chapter, a modified version of the T-detectur that is
adaptive to rapid changes in the medians and/or to unknown medians
is proposed and investigated. The conditions under which the
adaptive T-detectcr remains distribution-free are obtained. It is
found that the adaptive T-detector remains distribution-free for a

much wider class of detection problems than the T-detector. The
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adaptive T-detector is then applied to the detection of a gaussian signal
in gaussian noise, and its performance is evaluated and ccmpared to the

performances of the T-detector and of the optimum likelihood detector.

T.-2 The Modified Test Statistic

The adaptive T-detector is based on a modified version of the

T-statistic. The modified T-statistic is

n/ /

2 LA
L
Tm ) x_ﬁn 2 Z '[ (yai - y21-l)’ (Xa‘_, - XEJ-I)] (7-2-1)
im] J=1

B

oy,
Z Z v (vyruy)
j=1 J=1

where vy = yai-yai—l’ u.'j = x23' x2j-1’ and Yy? k=1,2,..., n, and xz,
i=1,2,..., m, are the values of the data and reference samples ob-
tained, respectively, from Y(t) and N(t). The function y(v,u) was
defined previously. The test statistic as defined above is operating
on the sample functions Y(t) and N(t) in the same manner as the system
shown in Figure 17. Here l/rl and 1/12 are, respectively, the rates
a’. which Y(t) and N(t) are sampled.

Application of the adaptive T-detector to the detection of
stochastic signals in noise requires, as did the T-detector, that the
variances of the reference and data samples are identical under no-

signal conditions. The latter will be true, for instance, if the

adiitive disturbances in the reference and data channels have first
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orcder statistics of identical form and differing,

their location parameters.

if at all, only in

1(t) + v(t) v(t,)
»4 Adder 34 Sampler
Delay Y
P T o
Y Digital
S8imulation :nn
of S— N
T-statistic
Deley
51
12 T
N(t) + u(t) u(t,)
54 Adder f——< Sampler
Fig. 17. Block Diagram of Adaptive T-detector

T.2.1 Conditions for Distribution-free Modified Test Statistic

bution-free are given by the following theorem.

Theoren 7.1

The conditions under which the modified T-statistic is distri-

The modified T-statistic false alarm rate remains asymptotically

distribution-free for the class of detection problems with reference

and data channel first-order statistics having the following properties




[N
under no-signal conditions:
a) the first-order statistics are staticnary or quasi-stationary

in form with at most non-stationary location parameters;

b) the reference and data channel first-order statistics are
of identical form,differing, if at all, only in their

location parameters;

c) the members of each sample pair (Yéi’ Y i=1, 2 ...,

21_1))
n/2 , have identical first-order statistics;

d) the members of each sample pair (xzj, xad-l)’ j=1,2, ...

m/2 , have identical first-order statistica

Proof:

Because of condition (a) we have that

Fyk(y-Mk) - Foy(y), allk=1,2, ..., n (7.2-2)
and
sz(x - NL) = Fox(x) a1l 4=1,2, ..., m (7.2-3)

where uk and N, are, respectively, the medians of the random variables

L
Yk and XL. Moreovar, because of condition (b) we have that

- = - . = LI ) -""h
Fyk(y M) sz(x N, F(x),, ¥=1,2 ..,n (7.2-k)
L=1,2, ..., m

Conditions (c) and (d) in conjunction with Eq. (7.2-4) simply state,

respectively, that

F (y-M,) = F (y-M,) = F (y) , al1 41 =1, 2, ..., n/2
Yoi-1 i Yoy 1 °

(7.2-5)
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and
F (x -N,)=F (x-N)=F(x),all j=1,2, ..., m/2
Xz3-1 3T Xy e
(7.2-6)
Using Eq. (7.2-5) , we obtain the probability density of V, vhere
Vi = Yzi - £2i-l. This 18
[}
f(v)=f £t (y) £ (y +v) &
vy Vo1 Yoi.1
-0
- -]
= f (x -M)f (x + v-M,) dx
f Y21 SR YR 1
- Q0
- -]
- f £ (x) f£,(x+v) ax (7.2-7)
- 0

Thus, the density functions of the randam varisables Vi y 1=1,2, ...,
n/2 are the same and given by Eq. (7.2-7) above. In the same manner
and using E3. (7.2-6), it is easily shown that the random variables

Ud, j=1, 2, ..., m/2 have the same density, given Ly Eq. (7.2-T)
also. Thus, it has been established that the random variables V

i

i = l, 2, s ey n/2 and U‘j} J = l, 2, LA ] m/2 }} have identi":&l diBtI‘i-

butions. Hence, according to reference (31), the mean and variance
of the modified test statistic are given by Egs. (6.2-2) and (6.2-3)
where Fo(o) must, in this case, be substituted by Fv(o) where Fv(v)

is the common distribution of V, and U, under no-signal conditions.

1 J
Also, in this case, m and n must be substituted in Eqs. (6.2-2) and

(6.2-3) by n/2 and m/2, respectively. From these expressions for
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the mean and variance, it 15 scua tiul & necessary wad sulffizient
conition for vie modified test stotistic t-lse-alarm rate to be "
ag;r ototice ™ ly distribution-irece ic that zers Lv o specifieu quantile'
o1 Lthe distribution Fv(v), regordle s of the chnnnel stniisticsc. This

can be shown to ber truc usivg kq. (7.2-7). Thus

2,0 = [ £ e | (7.2-8)

-f ] £.(x) £ (x + v) dxdv

| -9/? fo(x) [ ‘/9 fo(x’+ v) dv ] dx
-.f F (x) aF_(x)
- % q-e.d.

This completes the proof of the theorem. , |

" It is seen from the above theorem that regardless of the form of
the channel statistics and repgardless of whether the noise medians‘
are ropidly varying and/or uniinown, the modified T-statistic remains
distribution-.ice for the class of detection problems with reference
ancé data chznnel Jirst-order statistics of identical and stationary

form, wce. no-rignal conditions. .Jor this cless of detection prollems,

- the mean ¢nd vorianice under no-sipnal conditions are




1

E [Tmn ] =3 (7.2-9)

o 2 [ T ] = 2 formn>>n>>17 (7.2-10)
o mn 18n :

7.2.2 The Modified T-statistic Efficacy

For the class of detection problems given by Theorem 7.1, the

modified T-statistic mean under signal conditions is

~ N
Ee [ T ] = ‘/ ( l-Gv(x)] dFv(x) + x/ Gv(v) dF;(v) (7.2-11)
0 - B0

vhere G (x) and Fv(x) are the distributions of the randam variable
V under signal and under no-signal conditioms, respectively. Proceeding
in the same manner as in Chapter 6, we obtain the efficacy of the

modifiea T-statistic form >>n > > 7. This is

r
oA de(x)
K =24 LH/‘ 30
- 00

4:2.3 Performance Indices

It was shown in the previous chapter that the T-statistic satisfies
all of the conditions (A) - (F) in the weak signal case. The modified

T-statistic, if expressed in terms of A and uj, is equivalent to the

T-statistic; hence, it too satisftes all of conditions (A) - (F) in the
éG (x)
v exista. Thus, in the weak

4 g0
signal case and for the class of detection problems specified by theorem

weak signal case and whenever

7.1, the modified T-statistic pe:rformance relation and output signal-to-

noise ratio are given by
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2

dG_ (x)
: dFv(x)] 'ézns

8=0 drv(‘) '[ a8

dac (x)
2k U -

8=0

2
_— [ erf’l(l-aa) + erf-l(l-Qﬁ)]

and . J % () (7.2-13)
SN . BY: v - v
(§) = 82 [.f., B |4y T _[ EC esodpv(")]
(7.2-14)

The efficacy given in Eq. (7.2-12) may also be used to obtain the
asymptotic relative efficiency of Tmn with respect to other statistics.
Thus, the efficacy specifies all the performance indices of the adaptive
T-detector for the conditions under which the efficacy given in Eq.

(7.2-12) is valid.

7.3 Applications

In the following, the adaptive T-detector is applied to the detection
of a gauss.an signal in gaussian noise; its performance in the problem
is eveluated and compared to the performance in the same problem of the
T-detector and of the optimum 1l‘kelihood detector.

T.-3.1 Detection of Narrow-Band White Gaussian Signal in Additive
White Gaussian Noise

The probability density functions gv(x) and f;‘r(x_) are, in thise

cise, _ ven by
2
X
)= & e B, ecxcn (7.3-1)
Jen2

n




2
X
gv(x) = s}f;-rz(e'rl) e 2.2(ptl) , m<x <™ (7.3-2)
Thus,
di;(x) 5 £, (7.3-3)
9=0

The adaptive detector efficacy is obtained using Eqs. (7.3-1) and (7.3-3)

in Eq. (7.2-12). The efficacy is

. X 0 =L
K =2k [ f gﬂe' ° dx - j g-" e : dx ] (7.3-4)
0 ™

i
VD

2
m

Using Eqa. (6.3-1) and (7.3-4) we obtain the asymptotic relative
efficiency of the aduptive T-detector with respect to the T-detector.
The ARE is

1
ARE; MN) * 3 (7.3-5)
mn, mn

The asymptotic relative efficiency of the adaptive T-detector with
respect to the optimum likelihood detector is obtained using Egs.

(B-59) and (7.3-4). The ARE is

ARE, | * = 0.305 (7.3-6)
mn, 2

The results for this problem are presented graphically in Fig. 18

7.4 Summary of Results

In this chapter, a modified version of the T-detector that is

adaptive to rapid changes in the location parameters — specifically
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the mediens and/or to unknown medians - was proposed and investigated.
The conditions under which the adaptive T-detector remains distribution-
free vere &lso obtained. It was shown that the adaptive T-detector
false alama rate remains asymptotically distribution-free for the class
of detection problems with reference and data channel first-order
statistics that are of identical and stationary form, under no-sigral
conditions.

The adaptive T-detector was applied to the detection of a gaussian
signal in gaussian noise, and its performance invistigated. It was
found that the adaptive T-detector is half as efficient as the T-dstector.
This, however, is expected since the adaptive detector utilizes for
detection only half as many ssiples as the T-detector; the other half
is used to meke the adaptive detector distribution-free for & wide
class of problems even when the medians are rapidly varying and/or unknown,
The adaptive T-detector information rate was found to be 30% of that of
the optimm likelihood detector.

From the results obtained in this chapter, it is concluded that
use of the adaptive T-detector instead of a likelihood detector entails
e small loss of detection efficiency for gaussian channel statistics.
However, the adaptive T-decector is applicable even when the form of the
distributions is unknown, since it remains distribution-free for a wide

class of detection problems.
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Chapter 8
CONCLUSION

8.1 Summary ry of Problem Discussion and Procedures

We have been concerned in this work with & class of two-input detection
systems for digital communication over random and unknown channels., The
two-input systems herein investigated possess false-alurm rates that are
invariant for wide classes of channel statistics. The motivation for
consider:lng such systems arises from the need of insuring an acceptable
performance in a changing and./or incampletely known environment.

Specifically, in this work, coincidence detection prccedures with
invariant or distribution-free false-alarm rates were proposed and inves-
tigated. 'In the distribution-free coincidence procedures iﬁnstigated, the
threshold was chosen to be a specified noise distribution quantile (i.e., the :
median) so that the test statistic possessed, asymptotically and under no- |
signal conditions, a known distribution, independent of the statistics of
the,l detection problem.

The coincidence detection procedures were subsequently moditied so
that the detectors based on them constituted learning systems with respect
to slowly varying and/or known location perameters. The coincidence pro-
cedures were modified in still another manner so that the detectors
utilizing these modified procedures vconstituted adaptive systems with
rebpeilzt'fo ‘rapidhr. varying a.nd./or unknowvn location parameters. |

- The distribution-free coincidence detectors were applied to various
detection problems of practical importance; their performances were
ev‘a.luated‘ and compared to the performance of comparable likelihocod
det;ctors.

In addition to the distribution-free coincidence detectors, a

detector well suited for the detection of stochastic signals in noise was
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proposed and investigated. The T-statistic wms subsequently modified so
that the detector utilizing the modified statistic constituted an adaptive
system vith respect to rapidly varying and/or unknown location parameters.
After obtaining the wide classes of detection problems for which the T-
detector and the adaptive T-detector false-alarm rates remainel distridbu-
tion-free, the detectors were then applied to detection problems of
practical importance; their performances were evaluated and compared to

that of the optimum likelihood detector.

8.2 Conclusions

The invariant nature of the test statistic distribution under no-
signal conditions insured a false-alarm invariant with respect to changes
in the channel statistics. The median of the noise under no-signal
conditions was the only information concerning the channel statistics
that was required by the distribution-free :oincidence procedures.

Also obtained were the classes of detection problems for which the

false-alarm rates of the above coincidence procedures remained distribution-

free.

It was found that distribution-free coincidence detectors were quite
efficient, though sub-optimal; for channels with gaussian statistics, and
highly efficient for channels having a combination of gaussian a..d impulse
noise.

The T-detector and the adaptive T-detector were found to be reasonabdbly
efficient for the detection of gaussian signals in gaussian noise aud
highly efficient for some non-gaussian channel statistics.

In general, from the results obtained in this investigation, it is
concluded that use of the distribution-free detectors proposed here,

instead of equivalent likelihood detectors, entails only a small loas of

Hemtes o o ey
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detection efficiency for gsussien channel statistics; while in the case of
impulse and gaussian noise present in the channel, use of ‘he distribvution-
free detectors resulis in higher detection efficiency. Moreover, the
distribution-free detectors have invariant false-alarm rates for wide
classes of channel statistics - hence, they are applicable ever when the
form of the probability distributions is unkncwn. 1In addition, the
detectors proposed herein have invariant and simple structures and can,

therefore, be easily implemented.

8.3 Recommendation for Further Study

The distribution-free detectors proposed in this investigation merit
further consideration. In particular, the performance of these detectors
for large signal-to-noise ratios nseds to be investizated. It would also
be of interest to investigate their performance and distribution-free
nature for the case of dependent samples. The above studies are in
general difficult to o theoretically; hence, & computer simulation study
and/or experimental investigation could be substituted.

The distribution-free coincidence detection procedures investigated
utilized the median under no-signal conditions as theilr threshold level.
However, other distribution quantiles cculd also be used. An investigation
of the properties and cvaluation of the performance, in detection problems
of practical importance, of coincidence detection procedures utilizing
as threshold levels quantiles other then the median, would constitnte
an important extension of the present work.

Finally it would be of interest to investigate the distribution-
free nature and detection efficiency of a generalized coincidence detec-
tion procedure employing as test statistic a weighted sum of coincidence
type test statlstics having various distribution quantiles as their
respective threshold levels. In connection with the generalized coinci-

dence procedures, it would be of importance to obtain a weighting

e me Sy by e ——— P
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psocedure that minimizes the variance of th: genetralized coinclience
test statistic or better yet to obtain a weighting procedure that

naximizes the information rate.
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Appendix A
DETECTION PROBLEMS INVESTIGATED

A-1 Detection of a Constant in Additive Noise - General Case

In this problem, the signal is either one of constant amplitude
or & sine wave of known phase sampled always at the same point, preferably
at its pesk, so that as far as the samples are concerned, this is equiva-
lent to a signal of constant amplitude. The signal-to-noise ratio © is

defined as
A
0= pe (A-1)

wvhere 02 ig the noise variance and A is the amplitude of the constant
signal in the case of a constant signal, or the peak amplitude of the
gire wave in the case of a sinusoidal signal.

The probability distribution function Fo(y) under no-signal conditions
and the probability distribution Ge(y) under signal conditions are

related as follows

Gely) = F (v - 8) (A-2)
hence (4)
dG,(y) dF (y - o)
d0 euoa ode oo £ (v) (a-3)

where fo(y) is the probability density function under no-signal conditions.

A-2 Detection of a Constant in Additive Gaussian Noise

This dctection problem is a specific case of the previous general
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problem, with

2
1 g‘
t(y) = e , -e<y<e (A-1)
RN - : :
Hence
a
4G, (y) -
.__.__dg =..-.:,l.'... e e , =~®<y<w (A-5)
=0 <on -

A-3 Detection of a Constent in Additive Combination of Gaussian and
Impulse Noise

This detection problem is also a specific case of the gefieral

problem treated in section (A-1), with probability density under no-

signal conditions fo(y) given by

c
) mae PP ey <o (a-6)

This form of noise was chosen because it realistically represents

(11, 2u4) the amplit iude statistics of a noise source consisting of an
additive combinstion of gaussian and impulse noise. The relationship
between the parameters a, b, and ¢ can be derived from the following

ecuations

f fy) dy =1

f Y e (y) ay =1

the latter equation simply ensuring a noise variance of one. The




17y

relation of interest is

NI ) ') (A-T)
5 (%)

For this problem

dGG(y)
ae

c
_.__ae"dyl y -9 <y<w (A-B)

6=0

A-I Detection of a Sine Wave of Unknown Phase in Additive Gaussian Noise

The distribution function under signal conditions for this detection

problem has been shown to be (25)
0

Ga(y)-% f o(?g-aﬁs copy)dy (A-9)
0

O S (2K-1)

’°<§>+Z KR o (&) ¢<§>

K=1

where the mean of the noise is agsumed to be 2ero, 02 is the mean square
value of the noise, A is the maximum amplitude of the sine wave and 6

ig defined as

6= = (A-10)

that is, 6 is the ratio of the mean square value of the signal to the
mean square value of the noise. The functions @(y) and ¢ (y) are

defined as

Ll

f

T OB (e A A a8
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2
Y
¢(y)=;-3-‘--e 2, Lecy<m (a-11)
N2n .
y
o) - [ P@Wax , -ec<y<e (A-12)

The distritution Fb(y) under no-gsignal conditions is found from Eq.

(A-9) by setting 8 = 0

F(y) = o ( §) (A-13)

Differentiating Eq. (A-9) gives

(y) v

aG _(y -

"'d_g—- R AR 2;2, o<y < (A-1")
=0 om o

A-5 Envelope Detection of a Sine Wave in Narrow-Band Gaussian Noise

In this detection problem, the observed waveform is the envelope
of a sine wave and additive narrow-band noise. The frequency of the
sine wave is the same as the center fiequency of the noise baud. The
nolse is assumed to be a gaussian random process with zero mean. Under
these conditions, the distribution fuactions under signal and under no-

signal conditions are {(26)

2
Y ) l:-gfe_- * e:] ¥y 1/2
) = Ly Ll Lea?], yx0 (s
=0 , y <0
2
o) = Ly 2, y 20 (A-16)

=0 , ¥y <0
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vwhere y is the arplitude of the envelope, 02 is the mean square value
of the noise, Io(x) is the modified Bessel function of the first kind,
zero-th order, and the signal-to-noise ratio 8 is equal to the signal-

to-noise power ratio; namely

0 = —— (5'17)
202

where A is the peak amplitude of the sine wave.
The distribution function under no-signal conditions is

2
-
Fo(y) «l-e 20° , y>o0 (A-18)

=0 , y<o

From Eq. (A-15) we obtain the distribution fmction under signal

conditions, which in turn gives ()

Y
2 T2
-5 e ’ y>0 (A-19)
(o

6=0 2

dG(y)
de

=0 , y<O0

A-6 Bquare -Law Detection of a Sine Wave in Narrow-Band Gaussian Noise

In this detection problem the signal is agein a sine wave immersed
in additive narrow-band noise. The frequency of the sine wave is the
same as the center frequency of the noise band. The noise is assumed
to be a gaussian random process with mean zero and mean square value one.
The observed waveform is the output of a square-law detector. The

probability densities of the output of the square-law detector under
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signal and under no-signal conditions are

g =e O 121,  yxo0 (a-20)
=0, ¥y <0

t(y)=e¥ , y>0 (a-21)
=0, Yy <o

vwhere Io(x) is the modified Bessel function defined previously, and the
signal-to-noise ratio 6 is equal to the signal-to-noise rower ratio;

namely

8= —— (a-22)
20°

[0
where A is the peak amplitude of the sine wave, and ¢” is the mean
square value of the noise in this case equal to one. From Eq. (A-20)

we obtain

|
dGe(y)
a0

= -ye y y_>_0 (A'e})

=0 , y <o

A-7 Detection of Narrow-Band White Gaussian Signal in Additive Narrow-
Band White Gaussian Noise

In this problem, the observed waveform is a sample function from
a random process which is the sum of a narrow-band white gaussian signal
procegs and e narrow-band white gaussian noise process. The processes

are centered at the same frequency and have zero means. The probability
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densities of the detector input under signal and under no-signal

conditions, respective’ , are 5
- __%%__.
2a,,“(1+8)
gl¥) = 2 e MUV lacycoe (a2h)
o Uon(1 + 0)
2
A
20‘2
fo(y)=—-—}——-e T -@o<y<w (a-25)
ON \ﬁar

where ah? is the mean square value of the noise, and the signal-to-

noise ratio 6 is equal t¢ the signal-to-noise power ratio
e = _..s__ (A-26)
where 082 is the mean square vlaue of the signal.

The distribution function of the detector input under signal

conditions, obtained from Eq. (A-24), is given by

J - l;_

1+8 2

o) = [ ;‘—%&—e L (a-27)
(e

Differentiating, we obtain

ac (y)
0
T = - % fo(y) (A-28)

it A
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A-8 Envelope Detection of Narrow-Band White Gaussian Signal in
Additive Narrow-Band White Gaussian Noise

In this problem, the signal is again a narrow-band white gaussian
random process immersed in an additive narrow-band white gaussian noise
process. The signal and noise random processes ere assumed to be
centered at the same frequency and to have zero means. However, in
this problem, the input waveform prior to its examination by the
detector is passed through a linear enveiope detector. Thus, the
observed waveform is the envelope of a sample function from 2 randmm
process that is the sum of two narrow-band white gaussian processes.
The probabiiity densities of the envelope under signal and under no-

signal conditions are (27)

2
- __E;;______
20.°(1 + @)
ggly) = 21“ e y ¥20 (A-29)
L (1+690)
-0, y <0
2
-
r ) =d5e 1, y>o0 (a-30)
N
=0 , y<o

~

wiere cs‘ and cN“ are, respectively, the signal and noise mean square

D

values. The signal-to-noise ratio & is equal 1o the signal-to-noise

power ratio

g = -——-————-—wg (A‘Bl)
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The distribution function Ge(y) under signal conditions is

¥ 5
J1+0 - _I_g
Goly) = f e *n a (A-32)
0 .
= F ___i—- !
°NTve”

Differentiating, we obtain

a6 (y)
a0

o L2 (v) (a-33)

A-9 Square-Law Detection of Narrow-Band White Gaussian S8ignal in
Additive Narrow-Band White Gaussian Noise

In this detection problem, as in the previous two, in the absence
of signal, the channel output is a sample function of the noise narrow-
vard white gauesian process; and, in the presence of signal, the channel
~.twt .s the sum of two sample functions — one from the noise and the
sther from the narrow-band white gaussian signal process. The signal
and noise processes are assumed to be centered at the same frequency
and to have zero means. The channel output prior to its examination
by the detector is passed through a square-law detector (27). The

robability densities of the square-law detector output under signal

and under no-sirmel r~nonfit:-r-, -—esvectively, are (27)
- EZ_.
1 Oy (1+8)
goly) = —5—— e , ¥20 (A-34)
oy (1 +8)
=0 5 Y <0
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2
1 |
fo(y) =ze , y>0 (A-35)
|
=0 , y <o
where csz and oka are, respectively, the signal and noise mean square

values and 6 is the signal-to-noise power ratio
o= —%— (A-36)

The distribution function under signal conditions is
1

6o) = f £ (x) ax (A-37)
0

«F (—L
o\l+ 86

Differentiating, we obtain

a6 (y)
ECH

=-yf(y) (A-38)
=0
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Appendix B
LIKELIHOOD DETECTORS

In this appendix, the likelihood detectors associated with the
detection problems treateC in this investigation are presented, and their
performence in the above procblems evaluated.

It 1s well known .hat a likelihood detector bases its decisions on
the likelihood ratio statistic defined as

gglyy)

ﬁ -—G,D' (3-1)

i=1
where n is the number of independent semples extracted from the observed
wavefcrm Y(t), and gaiy), fo(v) are the probability densities of the
detector input under signal and under no-signal conditioas, respectively.
For the weak signal case, and provided the derivative of ge(y) with
respect to @ exists and is contimious at 6§ = 0, the likelihood ratio

statistic is equivalent to

n
b'(y,)
?lx' Z T : (B-2)
Yq
1m1 ©
where
d g,(y)
'(y) = —2 (-3)
¥  lgeo

The likelihood statistic given in Eq. (B~2) satisfies condition (A)-(F)
in the weak signal case and for the problems investigated. Thus, its

performance relatior and output signal-to-noise ratio are given by

e et
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ORES <

K 6%n = 2[ert *(1-2a) + ert T(1-28)1° (B-4)
( % ) = 6 ynk* (B-5)

where the efficacy K* is (5)

2
b'“{y)

K=| — (B-6)
Ty Y

The specific likelihood detectors associated with each particular

detection problem and their efficacy in the problem are given below.

B-1 Detection of & Constant in Additive Gaussian Noise

Case 1. The additive no'se statistics are assumed to be stationary.

Thus, the mean and variance under no-signal conditions of the detector

' input will be assumed to be known, since they can easily be obtained for
a stationary process. The mean under no-signal conditions can then be
subtracted from the reference and data waveforms, and the resulting
waveforms divided by the variance so the random variable Y representing
the amplitude of the detector input is normelized to a N(O, 1) random
variable. Eqs. (A-2) and (A-U4) are then appliceble. Utilizing them

in Eqs. (B-2) and (B-3) we obtain (5)

n

* 1

-t ) (2-7)
i=l

K =1 (B-8)

So, for this case of known mean and variance under no-signal conditions,

only a data sample is required by the likelihood detector.
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Case II. In this case the mean under no-signal conditions is assumed

to be unknown or quasi-stationary, while the variance under no-signal

conditions is assumed tc be stationary so that, if unknown, it can be

easily obtained.

of one.

are

where

Thus

Thue, the input can be normalized to have a variance

o w?
1 2
t(y) =—=e ’ -e<y<®
° Jex
_ fy-M-0)®
1 2
g (y) == sy ~®W<y<w
® Jzx
o =4
g
= A
_ Sy-m?
b'(Y)=‘(L"l.M e 2 ’ ~m<y<®

2x

= (y-M) £_(y)

and the likelihood ratio statistic is

o) =2 ) G, -

i=1

For this case the probability dernsities of the detector input

(3-9)

(B-10)

(B-11)

(B3-12)

(B-13)

However, the mcan M is unknown. To apply the above statistic, the unknown

mean will be estimated from a reference sample function obtained under
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no-aignal conditions. The sample mean M 18 chosen as the estimator

of M.

1
M== Z xJ (B-14)

vhere x4 is the valve of the Jth semple obtained from N’(t), the

reference sample function. Utilizing -ﬁ, the likelihood statistic becomes

n

* 1 -

o2 Z (v, - ) (B-15)
i=1
n m

1 1
“n Y1 " m Z Xy

i=1 J=1

*
The mean of Ln under signal conditions is
E[LY] =6 (B-1€)
6-n

and the variance under no-signal conditions is given by
20 % 1 1
9 (L) =3+ n (B-17)

Hence, the efficacy of the likelihood statistic 1s

* o
dEe(Ln)
*
K =% dé . 0=0 (B-18)
oO(Ln)
1
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Case III. The mean under no-signal conditions is assumed to be
non-stationary, while the variance is assumed to be staticnary. This is
a conceiveble prectical situation. 8ince the mean 1s non-stationary and
its time variation is unknown, it cannot be estimated; hence, the likeli-
hood detector cannot be employed if only one sample function is used.
However, if two channels -- & reference and a date channel with
identical statistics ~- are utilized, we may eliminate the need for
knowing the mean if the reference sample function is subtracted from the
data sample function and a decision is based on the samples extracted
from the difference waveform. If, in addition, the difference waveform
is divided by the known variance, then the probability densities of the
amplitude of the detector input Z are independent of the time varying

mean, and are given by

2
2
-
f(z)s-l-'e ~wC 2 <€ @ B-1
o i ) (B-19)
- z.-92
ae(z)sﬁe ¢ -mcg < w (B-20)
X
Thus
’ 1
b'(z) =52 fo(z)
and
L 2
* A |
o (8-21)

K =% (B-22)

e a e rmm e mem v e - mm———
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B-2 Detectior of & Corstant in Additive Noise-Unspecifiec Disz-itutions

in .his general problem the form of the distributions Ga(y) and
Fb(y) are unknown. The only information available is that Ge(y) and

Fb(y) obey the relation
Go(y) = F (y - 0) (B-23)

Thus, the likelihood ratio statistic cannot te used in this case of
distributions of unknown form. However., the likelihood ratio statistic
obtained under a similar geussian situation can be, and usually 1is,
erployeC. This is given by Eq. (3-7).

Case I. The mean and variance under no~signai conditions are

assumed to be stationary; hence, they can be easily octained if unknown

and the detector input amplitude Y normalized, so that

(r-24)

L}
o

E (Y]
coz[Y] =1

The likelihood statistic utilized in this case is

with efficacy given (5) by

K =1 (B-25)

Case II. The mean is unknown or quasi-stationary under no-signal
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conditions, while the variance is assumed sta*ionary and known. The

detector utilizes the statistic

n m

LA 1

an;;Zyi-;ZxJ (B-26)
i=1 J=1

Since ior this general probiem ga(y) = fo(y-a) we have

n m
* 1 1
EfL] =3 Z E[Y,] - % Z E(X,] (B-27)
i=1 J=l
=6 +M-M
=0
and
o ) =2+ 2 (3-28)

for eu input normalized with respect to variance. Hence, the efficacy is

(B-29)

Case III. The mean is non-stationary under no-signal conditions,
and its time variation is unknown. The variance is assumed to be
etationary and known. The mean cannot be estimated uncd.:- .t . etcd
conditions. Hence, the likelihood detector, ii order wnot WO descnc Ciu
the mean, will base its decision on measurements made on the difference

between data and reference sample functions obtained from channels of
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independent but identical statistics. The 3difference waveform is also

normalized so as to have variance of one. Under the stated conditions

* l ’
L =2 Z 2, {B-30)

where
z(t) = Y(t) - K (t)

8ince Ge(y) = Fo(y-o), we have that

Ee(z) =0
and (B-31)
0, (2) =2
Thus
*
Ef(L] =6
(B-32)
2. . * 2
9 Lyl =7
Hence the efficacy is
K = %. (B-33)

B-3 Detection of a Constant in Additive Combination of Geussian and

Impulse Noise

This dete:tion problem is a specific case of the general problem
discussed in the previous section. Hence, as stated there, if the forms

of the distributions are not known, then the binary integrator of

[
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Eq. (B-7) will be ueed since, in the absence of knowledge concerning the
form of the distributions, the likelihood ratio statistic cbtained under

the gaussian assumption is usually employed. The efficacies of the

statistic for the present detection problem are those given by Egs. (B-25),

(B-29) and (B-33).

B-4 Detection of a Sine Wave of Unknown Phase in Additive Geussian Noise

Case I. The mean and variance under no-signal conditions are assumed

stationary and known. For this case the likelihood ratio stavistic and

its efficacy are given (16) by

n ¥ 2
nel) (3-1) (B-34)
s
and
K =2 (B-35)

Case II. The mean under no-signal conditions is assumed to be
non-staticnary, while the variance is assumed stationary and known. In
this case, as stated previously, the likelihood detector wiil base iis
decisions on measurements made on Z(t), the difference between the data
and reference sample functions normalized to have unit variance. Thus,

the amplitude Z of the detector input is given by

Z=Y-X (B-36)

where Y and X are b amplitudes of the data arnd reference channel

outputs. Since Y and X are assumed :¢ ce independent, the probabilily

« fpac [P

R PP AN
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densities of Z under signal and under no-signal conditions are

go2) = [ ggl0) £,-2) & (2-37)
f2) = [ 1,00 t0-0) (- 35)

Utilizing Eqs. {A-9) and (A-13) we obtain

oo

v = [ 67 1) 1) fm2) @ (5-39)

1 z2
-2-<2—-l>fo(z), ~-®<z2< @

Thug, the likelihood ratio statistic and its efficacy are

A 2
A
LD i 1
G-t ) (-3 (3-40)
i=1
and
K =2 (B-141)

B-5 Envelope Detection of a Sine Wave in Narrow-Band Gaussian Noise

Case I. The assumptions for this case are the same as those made
in Case I of Section B-4. The likelihood ratio statistic and its efficacy

are given (5) by

L: =%f Z (yiz -1 (B-k2)
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Case I1. The asswaptions are the same as those made in Case II of
the previous section. Hence, for the difference envelope random varisble

V, utilizing Eqs. (A-15) and (A-16) we have

2
3
g-(v)sé-e Io(”@>'v>°
(B-44)
=0, ve<o
2
_V
£, (v) ==% e '3., v>o0
(B-45) .f
=0 , v<o !
Hence
’ 1 V2 |
v =z(F-1)1v (B-16)
and the likelihood ratio statistic and its efficacy are
n v e *
* 1 1 i
an;l.z-é(T-l) (B-47)
i=1
x*z%; (B-48)

B-6 Square-law Detection of a Sine Wave in Narrow-Band Gaussisn Noise

Case I. The assumptions here are those stated in Section B-2, Case I.
The probability densities under signal and under no-signal conditions are

given by Eqs. (A-20) and (A-21), respectively. Hence

b'(y) =(y-1)e”, y2o
(B-49)

=0, y<o
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Thus, the likelil.oo¢ ratio statistic is

The efficacy is

K= [ w-1f e e

=1

(B-50)

(B-51)

Case II. The assumptions and discussion in connection with Cuse II

of Section B-4 pertain here also.

Utilizing Eqs. (A-20) and (A-21) we

obtain the probability densities of the square-law envelope V of the

difference waveform z(t).

b

gglv) = e

L}
o]

£ (v)

n
(1]

Hence

(v) = % (v -

These are

1) fO(v)

v>o
(B-52)
v<o
v>o
(B-53)
v< O
(B-54)
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and the statistic and its efficacy are

L -2 z -21- (v, - 1) (B-55)
i=l

* 1

K =f (B-56)

B-7 DPetectior or Nerrow-Band White Gaussian Signal in Additive Narrow-

Band White Gaussian Noise

This problem involves the detection of a stochastic signal in noise;
hence, the information on the presence or abselnce of the signal is carried
by the scale parameters of the distributions. In fact, the decision on
the presence or absence of signal is based on the difference between
the variance under signal and under no-signal conditions. Location
parameters such as the mean carry no information. Thus, in the detection
of stochastic signals in noise, if the means under signal or under no-
signal conditions or under both are unknown or non-stationary, they may
be subtracted out of the channel output by capacitive filtering. In this
manner the amplitude of the channel output will be the same stationary
mean, namely zero, under signal and under no-signal conditions, and a
difference between the distributions Ga(y) and !B(y) can be attributed
to a difference in variance and, hence, to the signal. In this and the
following problems, the channel output will be assumed to have been
subjected to capacitive filtering prior to teing predetection processed
or prior to itsc examination by the detector.

Use of Eq. (A-24) ylelds

b'(y) -;l; % - 1) £ (y) (B-57)
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vhere ro(y) .5 given by Eq. (A-25). Thus, the likelihood ratio statistic

is

(B-58)

vhich is a square-lav suming or energy device. The efficacy of the

statistic is

et [0F-1f ) @ (5-59)

|
LM ] o

B-8 Envelope Detection of Narrow-Band White Geussian Signal in Additive
White Caussian Noise

From Eq. (A-29) ve obtain
2
o'(y) = (5-1 20 (-60)

thus, the likelihood statistic is

n

* 1 yia
) (1) (1-61)

i=]

wvhich is an energy summing device as in the previous case. The efficacy

of the statistic is
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- f (£-1) e a (8-52)

that is, twice the efficacy obtained when the energy detector is used

without envelope predetection processing.

B-9 Square-Law Detection of Narrow-Band White Gaussian Signal in
Additive Narrow-Band White Gaussian Noisge

From Eq. (A-34) the quantity b'(y) for this problem is obtained.

It is

b (y) = (v - 1) £,(y) (B-63)

thus, the likelihood statistic 1is
n
L= 1
h n <:yi - :)
i=]

which is a simple summing device. The efficacy of the statistic is

S e X PR (3-64)

the same as that obtaired by envelope predetection processi.g the input

waveform and using an energy detector.




